Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Веников Путятин (ч1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.36 Mб
Скачать
  1. Гидравлические электрические станции

Основой изучения работы ГЭС, преобразующих энер­гию воды в электрическую энергию, является наука, на­зываемая гидравликой-, она включает в себя гидростати­ку, изучающую равновесие жидкостей, и гидродинамику, изучающую движение жидкостей.

Мощность потока воды, протекающего через некото­рое сечение — створ, определяется расходом воды Q, вы­сотой между уровнем воды в верхнем по течению бас­сейне (верхнем бьефе) и уровнем воды в нижнем по те­чению бассейне (нижнем бьефе) в месте сооружения плотины. Разность уровней верхнего и нижнего бассей­нов называется напором. Мощность потока в створе (кВт) можно определить посредством расхода (м3/с) и напора (м):

P = 9,81QH.

/

В двигателях ГЭС можно использовать только часть

мощности потока воды в створе из-за/неизбежных потерь мощности в гидротехнических сооружениях, турбинах и генераторах, учитываемых коэффициентом полезного действия г]. Таким образом, приближенно мощность ГЭС

P = 9,81Q#ti.

Напор Н увеличивают на равнинных реках с помощью плотины (рис. 2.17, а), а в горных местностях строят спе­циальные обводные каналы, называемые деривационны­ми (рис. 2.17, б).

В гидравлических турбинах преобразуется энергия воды в механическую энергию вращения вала турбины. Турбина называется активной, если используется дина­мическое давление воды, и реактивной, если использует­ся статическое давление при реактивном (см. рис. 2.11) эффекте.

В ковшовой активной турбине (рис. 2.18, а) 1 по­тенциальная энергия гидростатического давления в су­живающейся насадке —сопле — полностью превращает­ся в кинетическую энергию движения воды. Рабочее ко­лесо турбины выполнено в виде диска, по окружности которого расположены ковшеобразные лопасти (рис. 2.18, б). Вода, огибая поверхности лопастей, меняет на­правление движения. При этом возникают центробежные силы, действующие на поверхности лопастей, и энергия движения воды преобразуется в энергию вращения ко­леса турбины.

Если скорость движения воды, вытекающей из турби­ны, равна нулю, то вся кинетическая энергия воды, не считая потерь, превращается в механическую энергию турбины.

Внутри сопла расположена регулирующая игла (рис. 2.18), перемещением которой меняется выходное сечение сопла, а следовательно, и расход воды.

В реактивной гидравлической турбине на лопа­стях рабочего колеса преобразуется как кинетическая, так и потенциальная энергия воды в механическую энер­гию турбины. Вода, поступающая на рабочее колесо тур­бины, обладает избыточным давлением, которое по мере протекания воды по проточному тракту рабочего колеса уменьшается. При этом вода оказывает реактивное дав-

\

\ • л

ление на лопасти турбины и слагающая потенциальной энергии воды превращается в механическую энергию ра­бочего колеса турбины.

З а счет кривизны лопастей изменяется направление потока воды, при котором, как и в активной турбине, кинетическая энергия воды в результате действия цен­тробежных сил превращается в механическую энергию

Рис. 2.17. Схема создания напора: а — с помощью плотины; б— с помощью деривационно­го канала: 1 — канал; 2 — напорный бассейн; 3 — тур­бинные водоводы; 4 — здание ГЭС; 5 — русло реки; 6 — плотина

Рис. 2.18. Схема работы активной турбины:

а — схема турбинной установки; б — рабочее колесо; 1 — верхний бьеф; 2 — трубопровод; 3 — сопло; 4 — рабочее колесо; 5 — кожух;

6 — отклонитель; 7 — лопасти (ковши)

турбины. Рабочее колесо реактивной турбины в отличие от активной полностью находится в воде, т. е. поток во­ды поступает одновременно на все лопасти рабочего ко­леса. Различные конструкции рабочих колес реактивных турбин показаны на рис. 2.19.

Рис. 2.19. Общий вид рабочих колес реактивных турбин: а — радиально-осевая, 6 — пропеллерная; в — поворотно-лопастная; г — двухперовая; д — диагональная

У радиально-осевых турбин лопасти рабочего колеса имеют сложную кривизну, поэтому вода, поступа­ющая с направляющего аппарата, постепенно меняет на­правление с радиального на осевое. Такие турбины ис­пользуют в широком диапазоне напоров от 30 до 600 м. В настоящее время созданы уникальные радиально-осе­вые турбины мощностью 700 МВт.

Пропеллерные турбины обладают простой конструкцией и высоким КПД, однако у них с изменени­ем нагрузки КПД резко уменьшается.

У поворотно-лопастных гидротурбин в отличие от пропеллерных лопасти рабочего колеса пово­рачиваются при изменении режима работы для поддер­жания высокого значения КПД.

Двухперовые турбины имеют спаренные ра­бочие лопасти, что позволяет повысить расход воды. Ши­рокое применение их ограничено конструктивными слож­ностями. Сложная конструкция свойственна также диа-

ГВБ макс

макс

ГНБ мин

Рис. 2.20. Поперечные разрезы гидр оэлектростанций: а — русловой станции: 1 — затвор во­досбора; 2 — паз ремонтного затвора; 3 — основной затвор турбинного водово­да; 4 — генератор; 5 — трансформатор; 6 — аварийный затвор; 7 — турбина;

ГВБ, ГНБ — горизонты верхнего и нижнего бьефа; путь воды; б—

п риплотинной станции: / — провода на ОРУ; 2 — плоский затвор; 3 — ма­шинный зал; 4 — генератор; 5 — спиральная камера; 6 — отсасывающая тру­ба; 7 •—турбина радиально-осевого типа; 8 — турбинный водовод; 9 — глубин­ный водоприемник; 10 — решетка; И — подъемный механизм щитов

Рис. 2.21. Волжская ГЭС имени В. И. Ленина (руслового типа]:

а — разрез: / — верхний бьеф; 2 — генераторы; 3 — нижний бьеф; б — срав­нение ГЭС (объем 4,5 млн. м3) с Исаакиевским собором в Ленинграде (объем 310 тыс. м3) и Московским государственным университетом (объем

2,6 млн. м3)

тональным турбинам, у которых рабочие лопасти поворачиваются относительно своих осей.

Радиально-осевые турбины установлены на Братской, Красноярской ГЭС и др. Поворотно-лопастными турби­нами оборудованы Куйбышевская, Волгоградская, Кахов­ская и Кременчугская ГЭС и др.

На электрических станциях турбина и генератор свя­заны общим валом. Частоты их вращения не могут выби­раться произвольно. Они зависят от числа пар полюсов ротора генератора и частоты переменного тока, которая должна соответствовать стандартной. Кроме того, необ­ходимо учитывать, что при небольших частотах враще­ния турбины получаются громоздкими и дорогими. Что­бы получить скорости агрегатов, близкие к оптимальным, при больших напорах используют турбины с малыми

значениями коэффициента быстроходности, а при не­больших напорах — с большими значениями этого ко­эффициента.

Разнообразие природных условий, в которых соору­жаются ГЭС, определяет разнообразие конструктивного исполнения турбин. Мощности турбин изменяются от не­скольких киловатт до 500 МВт, а частота вращения из­меняется от 162/з до 1500 мин-1.

В последнее время стали применяться горизонтальные агрегаты (капсульные), в которых генератор заключен в герметичную капсулу, обтекаемую водой. КПД таких агрегатов выше (95—96%) благодаря лучшим гидравли­ческим условиям обтекания. Такими агрегатами обору­дованы, например, Киевская и Каневская ГЭС.

При сооружении ГЭС обычно решают комплекс на­роднохозяйственных задач, в который помимо выработки электрической энергии входит регулирование стока воды и улучшение судоходства реки, создание орошаемых мас­сивов, развитие энергоемких производств, использующих местное сырье, и т. д.

На равнинных реках ГЭС с плотинной схемой концен­трации напора разделяются на два типа: русловые и при-

Рис. 2.22. Общий вид Саяно-Шушенской ГЭС (приплотинного типа) мощностью 6400 МВт

Здание

плотинные. При напоре до 30 м здание станции, как и плотина, воспринимает напор и располагается в русле реки (рис. 2.20, а). Такие ГЭС называются русловыми. Так как с ростом напора увеличивается объем строи­тельных работ по сооружению зданий русловых гидро­электростанций, то при напорах, превышающих 25—30 м, здание станции помещается за плотиной (рис. 2.20, б). Такие ГЭС называются приплотинными. На них весь на­пор воспринимается плотиной.

В настоящее время на равнинных реках сооружают станции, напор которых достигает 100 м, например на Братской ГЭС, построенной на Ангаре, и на Асуанской ГЭС, построенной в Египте.

На рис. 2.21 показана Волжская ГЭС имени В. И. Ле­нина, а на рис. 2.22 — Саяно-Шушенская ГЭС на р. Ени­сей, у которой высота плотины составляет 240 м и вода по водоводам поступает к 10 турбинам, вращающим электрические генераторы мощностью по 640 МВт каж­дый.