- •1 Семестр
- •Понятие информатики и ее роль в жизни общества.
- •Понятие информации. Источники, характеристики и формы существования информации. Процесс формирования информации.
- •Понятие и виды информационных процессов. Свойства информации.
- •Понятие количества информации. Способы измерения количества информации.
- •Понятие и виды систем счисления (сс). Правила перевода из 10-ой сс в другие позиционные системы счисления. Правила перевода из 2 сс в 8 или 16 сс.
- •Представление символьной информации. Кодовые таблицы.
- •Представление звука в памяти эвм. Способы хранения цифрового звука. Привести примеры форматов звуковых файлов.
- •Представление графической информации в памяти эвм: растровый и векторный способы Привести примеры основных растровых и векторных форматов файлов.
- •Эволюция эвм. Классификация эвм.
- •Понятие архитектуры и структуры эвм. Принципы Фон Неймана.
- •Принцип работы фон неймовской эвм.
- •Архитектура современных эвм.
- •Система команд эвм: понятие команды, формат команды, виды команд.
- •Способ поиска операндов в памяти эвм.
- •Понятие и классификация программного обеспечения эвм.
- •Понятие и виды системного программного обеспечения. Базовая система ввода-вывода.
- •Операционная системы: функции, базовые понятия (процесс, поток, память, разрядность).
- •Виды операционных системы (ос) и архитектура ос для персонального компьютера. Командный процессор ос.
- •Программы управления вводом-выводом.
- •Понятие и функции файловых систем.
- •Понятие файла, каталога, форматирования диска, кластера. Схема взаимодействия файловой системы с жестким диском.
- •Файловые системы для операционной системы Windows: fat16, fat32, ntfs.
- •Понятие и виды служебных программ. Программы архивации данных. Алгоритм Хаффмана.
- •Понятие, свойства и способы записи алгоритмов. Блок-схема алгоритма.
- •Типы алгоритмов.
- •Понятие и классификация структур данных. Понятие типа данных.
- •Переменные, константы и массивы.
- •Стек, очередь, дек.
- •Метод сортировки одномерного массива выбором.
- •Простая обменная сортировка одномерного массива (метод пузырька).
- •Метод сортировки одномерного массива Шелла.
- •Понятие программирования, языка программирования, алфавит, синтаксис, семантика языка.
- •Классификация языков программирования.
- •Операции над данными в языке с.
- •Оператора передачи управления: безусловные (goto) и условные (if, switch) языка с. Оператор goto
- •Условные операторы
- •I Рис.1. F (выражение)
- •I Рис.2. F (выражение)
- •If (выражение1)
- •If (выражение1)
- •If (выражение2)
- •Множественный выбор: оператор switch
- •Операторы организации циклов и continue, break языка с.
- •Оператор break
- •Оператор continue
- •Ввод/вывод данных в языке с.
- •Функции вывода данных библиотеки libс.Функции ввода данных библиотеки libс.
Эволюция эвм. Классификация эвм.
Второе поколение (средина 50 – середина 60 г.г.). В 1949 г. американские физики Уолтер Браттейн и Джон Бардин изобрели транзистор, а в 1954 г. Гордон Тил применил кремний для изготовления транзистора. Транзисторы заменили электронные лампы и с 1955 г. стали выпускаться компьютеры на транзисторах, это стали компьютеры второго поколения.
Особенности:
элементная база – транзисторы;
габариты – однотипные стойки, требующие машинный зал;
быстродействие – сотни тысяч – 1 млн. оп./с;
понижено энергопотребление;
повысилась надежность;
появилась память на магнитных дисках;
появились первые операционные системы;
программирование осуществлялось с использованием языков высокого уровня (фортран, бейсик, алгол и д.р.);
структура эвм – микропрограммный способ управления;
эксплуатация – упростилась.
Наивысшим достижением отечественной вычислительной техники созданной коллективом С.А. Лебедева явилась разработка в 1966 году полупроводниковой ЭВМ БЭСМ-6 с производительностью 1 млн. операций в секунду.
Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
Первое поколение. (1946 – середина 50-х гг.). В 1943 г. профессор Гарвардского университета Эйкен создал вычислительную перфорационную машину «Марк -1» на электромагнитных реле. В 1946 г. была создана ламповая вычислительная машина учеными Пенсильванского университета под руководством Джона Моучли ENIAC которая содержала 18 900 ламп, потребляла 150 кВт электроэнергии и выполняла 5 тыс. операций сложения в секунду. Так появились компьютеры первого поколения.
Особенности:
- элементная база электронно-вакуумные лампы;
- габариты – в виде шкафов и занимали машинные залы;
- программирование осуществлялось в машинных командах, а отладка за пультом управления;
- данные вводились с помощью перфокарт и магнитных лент с хранимыми программами;
- быстродействие – 10 – 100 тыс. оп./с.;
Они были очень громоздки и применялись в основном в крупных научных центрах.
Основоположником отечественной вычислительной техники стал электротехник Сергей Лебедев. Под его руководством в 1950 г. была создана самая быстродействующая малая электронная машина.
Третье поколение (60 – 70 г.г.). В 1958 г. Джек Килби изобрел первую интегральную схему, а Роберт Нойс – первую промышленную интегральную схему (Chip).
ИС - это кремниевый кристалл, площадь которого примерно 10 мм2. Одна интегральная система способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Особенности:
элементная база – интегральные схемы, большие интегральные схемы (ИС, БИС);
габариты – однотипные стойки, требующие машинный зал;
единая архитектура, то есть программно совместимые;
быстродействие – сотни тысяч – миллионы оп./с;
эксплуатация – оперативно производится ремонт;
программирование – подобен II поколению;
обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ;
структура ЭВМ – принцип модульности и магистральности;
появились дисплеи, магнитные диски;
задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.
Примеры машин третьего поколения — семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов. В конце 60-х появились мини-компьютеры.
Четвертое поколение (70 – по н/в) В 1971 г. был создан первый микропроцессор Intel 4004. Он состоял из 2300 транзисторов на площади 15 мм кв. и с тактовой частотой 108 КГц мог выполнять 45 различных команд и обладал такой вычислительной мощью как первый электронный компьютер, занимавший целую комнату.
В середине 70-х гг. были разработаны компьютеры четвертого поколения на больших и сверх больших ИС (до миллиона компонентов на кристалл). Также появились первые персональные компьютеры. В 1974 г. на основе процессора Intel 8080 был создан первый такой компьютер MITS Altair 8800. В 1977 г. компания Apple выпустила свой компьютер Apple II с графическими возможностями, цветным монитором и звуком. И наконец, 1981 г. появился компьютер IBM PC. Он был на базе процессора Intel 8088 c тактовой частотой 4,77 МГц, работающий под управлением операционной системы PC Dos 1.0, лицензия на которую принадлежала Биллу Гейтсу. Базовая цена 1565 долларов. Удачная конструкция этого компьютера стала использоваться в качестве стандарта ПК в конце XX века.
Быстродействие таких машин составляет тысячи миллионов операций в секунду. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов. С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.
