Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория массового обслуживания.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
235.16 Кб
Скачать

Вычисление вероятностей состояний системы массового обслуживания

Граф состояний СМО со схемой "гибели и рождения" представляет собой линейную цепочку, где каждое из средних состояний имеет прямую и обратную связь с каждым из соседних состояний, а крайние состояния только с одним соседним:

Число состояний в графе на единицу больше, чем суммарное число каналов обслуживания и мест в очереди.

СМО может быть в любом из своих возможных состояний, поэтому

ожидаемая интенсивность выхода из какого-либо состояния равна ожидаемой интенсивности входа системы в это состояние. Отсюда система уравнений для определения вероятностей состояний при простейших потоках будет иметь вид:

Вывод:

Системы массового обслуживания имеют один или несколько каналов

обслуживания и могут иметь ограниченную или неограниченную очередь (системы с ожиданием) заявок на обслуживание, не иметь очереди (системы с отказами). Заявки на обслуживание возникают в случайные моменты времени. Системы массового обслуживания характеризуются следующими показателями эффективности: относительная пропускная способность, абсолютная пропускная способность, вероятность отказа, среднее число занятых каналов.

Моделирование систем массового обслуживания осуществляется для

нахождения наиболее эффективных вариантов их организации и предполагает следующие исходные данные для этого: основные параметры, граф состояний. К таким данным относятся следующие: интенсивность потока заявок, количество каналов обслуживания, интенсивность обслуживания и объем очереди. Число состояний в графе на единицу больше, чем сумма числа каналов обслуживания и мест в очереди.

Вычисление вероятностей состояний системы массового обслуживания

со схемой «гибели и рождения» осуществляется по общему правилу.

Список литературы:

1. http://ru.wikipedia.org/wiki/Теория_массового_обслуживания

2. Теория массового обслуживания//Математический энциклопедический словарь, М., «Советская энциклопедия», 1988

3. Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев 4. http://math.immf.ru/lections/206.html

5. http://www.nuru.ru/teorver/041.htm

6. Вентцель Е. С., Овчаров Л. А. Теория вероятностей. Глава 10. Теория массового обслуживания. М., 1969

22