Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТКС.docx
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
742.43 Кб
Скачать

54. Преобразователь частоты в рпу.

Преобразователь частоты — радиоэлектронное устройство для преобразования электрического (электромагнитного) сигнала путём переноса его спектра на некоторый интервал по оси частот. Преобразователь частоты применяется, главным образом, в супергетеродинных радиоприёмниках, а также в различных радиоизмерительных приборах — селективных вольтметрах, анализаторах спектра, модулометрах и девиометрах, установках для измерения ослаблений. Его применение в этих случаях позволяет снизить рабочую частоту основного тракта усиления и селекции сигнала (тракта ПЧ), также сделать этот тракт неперестраеваемым, то есть, для настройки радиоприёмника на разные несущие частоты изменяется частота гетеродина преобразователя, несущая частота выходного сигнала, называемая промежуточной частотой (ПЧ), остаётся неизменной. Кроме выработки сигнала ПЧ преобразователь может использоваться и в других случаях, например, ультразвуковых линиях задержки электромагнитного СВЧ-сигнала.

55. Оснавные характеристики радиоприемных устройств

1) Чувствительность - способность воспринимать слабые сигналы в отсутствии внешних помех. Для количественной оценки ее - это минимальная мощность на выходе, которое обеспечивает заданное отношение сигнал- шум на выходе линейной части приемника.

2. Помехоустойчивость - способность приемника обеспечивать приём сигналов с заданной достоверностью при известном способе передачи сигнала и наличии в тракте помех.

3. Избирательность. Прежде всего частотная избирательность - способность приемника выделять полезные сообщения в пределах заданной полосы частот и ослаблять действие сигналов вне этой полосы.

Избирательность делится: избирательность зеркального канала; прямого канала (эти виды обеспечиваются преселектором); избирательность по соседнему каналу (обеспечивается УПЧ).

4. Динамический диапазон­ - определяется амплитудной характеристикой приемника.

Чем шире диапазон, тем больше сигналов.

5. Искажения ( линейные и нелинейные). Линейные подразделяются на частотные и фазовые).

Частотные искажения. Фазовые искажения.

Нелинейные искажения определяются нелинейностью амплитудной характеристики приемника.

- коэффициент нелинейности. ( мощность основной гармоники к сумме мощностей паразитных гармоник).

6. Электромагнитная совместимость - способность РПУ работать с учетом воздействия друг на друга.

56-билет

Сигнал — символ (знак, код), созданный и переданный в пространство (по каналу связи) одной системой, либо возникший в процессе взаимодействия нескольких систем. Смысл и значение сигнала проявляются в процессе дешифровки его второй (принимающей) системой.

Сигнал (в теории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал можетгенерироваться, но его приём не обязателен, в отличие от сообщения, которое рассчитано на принятие принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются (или находятся) в соответствии с передаваемым сообщением.

Аналоговый сигнал (АС)

Аналоговый сигнал

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС — гармонический сигнал: s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в цифровую систему для обработки невозможно, так как на любом интервале времени он может иметь бесконечное множество значений, и для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому очень часто необходимо преобразовывать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени ti (где i — индекс). Обычно промежутки времени между последовательными отсчётами (Δti = ti − ti−1) постоянны; в таком случае, Δt называется интервалом дискретизации. Сами же значения сигнала x(t) в моменты измерения, то есть xi = x(ti), называются отсчётами.

Квантованный сигнал

Квантование (обработка сигналов)Разрядность

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N−1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).

Цифровой сигнал

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине, называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записатьцелым числом. Последовательность таких чисел и будет являться цифровым сигналом.

57-билет. Особенности распространения радиоволн различных диапазонов

Радиоволны с длиной волны более 1 километра имеют отличительную особенность - способность хорошо огибать Землю при своем распространении. Поэтому волны этой части диапазона способны распространяться далеко за пределами прямой видимости. Конечно, при удалении излучающей антенны за линию горизонта сигнал будет значительно ослаблен, но, в общем, в этом диапазоне частот может быть обеспечена достаточно уверенная связь на расстояниях в сотни и тысячи километров.

Радиоволны, которые распространяются вдоль поверхности Земли, называют земными или поверхностными волнами. В этом диапазоне частот, кроме поверхностных волн, для связи используют и пространственные волны. Пространственными (ионосферными, небесными) называют такие волны, которые, будучи излученными от поверхности Земли, отразятся от ионосферы и вновь вернутся на Землю. Траектория распространения пространственной волны, вернувшейся на Землю после отражения от ионосферы, называется скачком. Электромагнитные волны нижней части радиодиапазона также хорошо отражаются от поверхности Земли (то есть с малыми потерями). Отраженные от Земли радиоволны при достижении ионосферы повторно отражаются от ее нижних слоев, образуя следующий скачок.

Таким образом, упрощенную модель среды распространения длинных и сверхдлинных радиоволн можно представить в виде двух электропроводящих сфер с совмещенными центрами. Радиоволны распространяются в промежутке между этими сферами, попеременно отражаясь то от внешней, то от внутренней сферы. Земля вместе с нижней границей ионосферы образуют для этого диапазона своеобразный сферический волновод. В этом волноводе формируется траектория многоскачкового распространения радиоволн (рисунок 6.4).

Рис. 6.4 Распространение длинных радиоволн пространственными лучами

Изменения свойств ионосферы сказываются не столь существенно для этого диапазона радиоволн, поэтому связь на этих частотах достаточно устойчива даже на далеких расстояниях и слабо зависит от времени суток.

Высокая стабильность распространения радиоволн этого диапазона используется, например, радиопередатчиками службы точных частот и времени, сигналы которых используются в системах связи всех диапазонов частот.

В заключение следует отметить об особенностях распространения электромагнитных колебаний самой нижней части радиодиапазона. Поскольку величина потерь при распространении радиоволн в среде с потерями (почва, вода, ионизированные газы и т.д.) уменьшается с увеличением длины волны, то и глубина проникновения радиоволн в эту среду увеличивается с увеличением длины волны. Эта особенность распространения радиоволн используется, например, для связи с подводными лодками, погруженными на глубину в сотни метров от поверхности океана. Для такого (единственно возможного) вида радиосвязи используют очень низкие частоты (очень длинные волны), что требует больших размеров антенн и высоких мощностей радиопередатчиков.

Радиоволны с длиной волны от 100 до 1000 метров так же, как и более длинные, распространяются и поверхностными, и пространственными волнами, но их распространение имеет свои особенности. Влияние нестабильностей параметров ионосферы на распространение радиоволн этого диапазона становится все заметнее, и длина пути, проходимого пространственной волной в точку приема, в разное время года и суток оказывается разной.

Днем в этом диапазоне волн на расстояниях до нескольких сотен километров для связи используются поверхностные волны. С увеличением частоты колебаний требуется более высокая концентрация заряженных частиц ионосферы для формирования отраженной волны, при этом радиоволны проникают во все более высокие слои атмосферы. Но с увеличением длины пути, проходимой радиоволной в ионосфере, возрастают ее потери. Радиоволны этого диапазона достигают слой Е ионосферы и возвращаются к Земле. Днем более низкий слой D имеет высокую концентрацию и вызывает значительное ослабление радиоволн, поэтому пространственные волны этого диапазона весьма слабы.

Ночью дальность связи может быть увеличена за счет того, что ночью слой D практически исчезает. Ослабление радиоволны в ионосфере значительно уменьшается и влияние пространственной волны в этом диапазоне становится заметнее. В конечном итоге это приводит к тому, что на больших дальностях в местах приема может наблюдаться эффект замирания, или фединга, проявляющийся в изменении уровня принимаемого сигнала. Основной причиной замирания сигналов является интерференция пространственной и поверхностной волн. На рисунке 6.5 показаны условные пути прохождения в точку, достаточно удаленную от излучающей антенны, поверхностной радиоволны 1 и пространственной радиоволны 2. Так как длина пути, который проходят радиоволны, может постоянно изменяться, то непрерывно изменяются и фазы приходящих сигналов.

Рис. 6.5 Распространение поверхностных и пространственных радиоволн

58-билет. ВХОДНЫЕ ЦЕПИ РАДИОПРИЕМНЫХ УСТРОЙСТВ

Входной цепью называют часть схемы приемника, связывающую антенно-фидерную систему с входом первого каскада приемника. Первым каскадом может быть усилитель радиочастоты или смеситель. Основным назначением входных цепей является передача полезного сигнала от антенны к входу первого активного элемента и предварительное выделение принимаемого полезного сигнала из всей совокупности сигналов, индуцируемых в антенной цепи. Входная цепь обычно представляет собой пассивный четырехполюсник, включающий в себя резонансную систему и элементы связи. В зависимости от диапазона частот резонансная система выполняется на сосредоточенных или распределенных элементах и состоит из одного или нескольких колебательных контуров или резонаторов (коаксиальных, полосковых, объемных). Элементы связи обеспечивают связь антенной цепи с контуром (резонатором), а при нескольких резонансных элементах, связь между ними и первым каскадом приемника.

В диапазонных приемниках наибольшее распространение получили одноконтурные входные цепи. В профессиональных приемниках могут применяться двухконтурные и многоконтурные входные цепи.

На рис.1-3 приведены часто встречающиеся схемы одноконтурных входных цепей. Схемы отличаются способами связи входного контура с антенной.

На рис.1 приведена схема с трансформаторной связью между контуром входной цепи Lк Ск и антенной А. В схеме на рис.2 использована емкостная связь входного контура с антенной. Если активным элементам будет биполярный транзистор, то может использоваться двойное неполное включение контура, рис.3. (Не часто, но находит применение комбинирования связь входной цепи с антенной, обычно это индуктивно-емкостная связь).

Рис. 1. Входная цепь

Рис. 2. Входная цепь с трансформаторной с емкостной связью связью с антенной

Рис.3. Входная цепь со связью с антенной фильтром

Рис.4. Входная цепь с автотрансформаторной двухконтурным полосовым фильтром

На рис. 4 показана одна из часто применяемых схем двухконтурной входной цепи. Здесь связь первого контура с антенной - трансформаторная. Связь между контурами - внутриемкостная через конденсатор  . Активный прибор - полевой транзистор подключен полностью во второй контур.

Основными электрическими характеристиками входных цепей являются: коэффициент передачи напряжения (мощности), полоса пропускания, избирательность, диапазон рабочих частот.

Коэффициентом передачи входной цепи по напряжению называют отношение напряжения сигнала на входе первого активного элемента приемника  к величине ЭДС в антенне  , а в случае ферритовой антенны - к напряженности поля сигнала:

.

Коэффициент передачи напряжения на частоте настройки входной цепи   называют резонансным коэффициентом передачи 

.

Полоса пропускания - ширина области частот, в пределах которой сохраняется допустимая неравномерность коэффициента передачи.

Избирательность - входных цепей определяет степень уменьшения коэффициента передачи напряжения при заданной растройке по сравнению с резонансным значением  .

59—шумы Радиоприёмное устройство — устройство для приёма электромагнитных волн радиодиапазона (то есть с длиной волны от нескольких тысяч метров до долей миллиметров) с последующим преобразованием содержащейся в них информации к виду, в котором она могла бы быть использована. Структурная схема РПУ

антенна

Шумы – это электроколебания, в которых есть бесконечно большое число составляющих с частотой от 0 до ∞. Бывают внешние и внутренние. Входные (внешние) – шумы, поступающие на вход антенны.Собственные (внутренние) – возникают в элементарных РПУ. Спектор шума бесконечно широк.Наиболее влиятельное шумы – шумы на первом каскаде.Для повышения чувствительности РПУ надо: а) снижать шумы в первом каскадеб) повышать коэффициент усиления первого каскада

в) сужать эффективную полосу пропускания ВЧ каскада РПУ

г) задавать меньшем отношением сигнал/шум на выход РПУ

3) Если первый каскад имеет большое усиление по мощности, то шумами последнего можно пренебречь

4) при использований малошумящего первого каскада, шумы на выходе РПУ определяются в основном входными шумами. Снижать собственные шумы целесообразно до уровня входных шумов.

60-билет. Супергетеродинный приемник АМ- сигналов

Приемники, состоящие из последовательно включенных ВЧ-усилителей, неудобны по нескольким причинам. Во-первых, отдельные каскады должны быть настроены на одну и ту же частоту, что требует либо очень большой координированности в работе с большим количеством ручек или же чрезвычайно точного согласования набора одновременно настраиваемых  -контуров. Во-вторых, поскольку общая частотная избирательность определяется характеристиками всех усилителей в совокупности, форма полосы пропускания будет зависеть от точности настройки каждого усилителя; отдельные усилители не могут иметь столь узкополосную характеристику, как это хотелось бы, так как настройка в этом случае была бы практически невозможна. И поскольку принимаемый сигнал может быть любой частоты в пределах области настройки усилителей, нельзя использовать пьезофильтры для получения плоской полосы пропускания с резкими спадами по краям (крутые  ), что обычно очень нежелательно.

Рис. 13.41. Супергетеродинный приемник.

Прекрасное решение этих проблем дает применение супергетеродинного приемника  , показанного на рис. 13.41. Поступающий сигнал усиливается одним каскадом ВЧ-усилителя, смешивается с сигналом локального генератора (ЛГ), и при этом получается сигнал фиксированной промежуточной частоты (ПЧ), в данном случае равной  . После этого следует набор резонансных усилителей с фиксированной настройкой на ПЧ, в которые входят селективные элементы, такие, как пьезокристаллические или механические фильтры. Схема заканчивается детектором и усилителем звуковых частот. Приемник настраивают, изменяя частоту ЛГ, так как любая входная частота смешивается с ней и преобразуется в промежуточную частоту (с точностью до полосы пропускания ПЧ). Вход ВЧ-усилителя должен настраиваться в соответствии и одновременно с ЛГ, но точность настройки не очень существенна. Это делается с целью а) улучшить чувствительность путем усиления на ВЧ с малыми шумами перед смешением и б) отсечь сигналы «зеркальной» частоты. В данном случае зеркальный - это входной сигнал с частотой на   выше частоты  (вспомним, что смеситель вырабатывает сумму и разность частот).

Другими словами, в супергетеродинном приемнике смеситель и локальный генератор (гетеродин) используются для сдвига входной (перестраиваемой) частоты сигнала в область фиксированной промежуточной частоты, где усиление и чувствительность максимальны.

Замечания о супергетеродинах.

Супергетеродинные приемники имеют еще некоторые особенности. В приведенной схеме показан еще один генератор - гетеродин; его используют при детектировании некоторых неамплитудно-модулированных сигналов (телеграфных, подавление несущей частоты в телефонии, при частотной манипуляции и т.д.). Дополнительные гетеродины используются даже для АМ-детектирования в «гомодинных», или «синхронных», детекторах. Часто приемники имеют не один смеситель (их называют приемниками с «множественным преобразованием»). Использование первой высокой ПЧ улучшает подавление зеркального канала (он сдвинут относительно фактически принимаемого сигнала на удвоенную промежуточную частоту). Более низкая вторая ПЧ облегчает использование фильтров на кристаллических резонаторах с резким спадом характеристик вне полосы пропускания, а третья ПЧ позволяет применять заграждающие фильтры, подобные фильтрам звуковых частот, низкочастотные керамические или механические фильтры, а также «умножающий детектор».

Недавно стало популярным использовать непосредственно преобразование частоты вверх на включенных прямо на вход балансных смесителях (т. е. использовать ПЧ выше частоты входного сигнала), а также фильтры на пьезокристаллах на частоте   МГц ПЧ с последующим детектированием уже без смещения. Такие схемы с однократным преобразованием обладают еще лучшими параметрами при наличии сильно интерферирующих сигналов, и они входят в употребление наряду с выпускаемыми промышленностью очень хорошими кристаллическими СВЧ-фильтрами и смесителями с малыми искажениями, сбалансированными в широкой области и имеющими хорошие шумовые характеристики.

Рис. 13.42. Смеситель с подавлением зеркальной частоты.