Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диссертация Смагулова Н.1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
12.24 Mб
Скачать

4.2 Материалы и методика исследования

Из экспериментальной стали А1(C – 0,15; Mn – 0,95; Si – 0,29; Р – 0,011; S – 0,012; V – 0,11; Тi – 0,012; Сu – 0,20; Аs – 0,020) изготовили прямоугольные в поперечном сечении образцы размером 20±0,1×15±0,1×10±0,1 мм. Аналогом экспериментальный стали А1 является сталь Ст3Гсп стран СНГ (C – 0,14...0,2; Mn – 0,8...1,1; Si – 0,15...0,3; Р – до 0,04; S – до 0,05; Ni – до 0,3; Сr – до 0,3; N – до 0,008; Сu – до 0,3; Аs – до 0,08).

Таблица 4.1 – План эксперимента физического моделирования

№ вар.

ε 1,

%

t1,

с

ε 2,

%

t2,

с

ε 3,

%

t3,

с

ε 4,

%

t4,

с

ε 5,

%

τв,

с

τв.о, с

Температура испытания – 900 0С

  1. 1

25

4

20

3

17

2,4

15

1,8

12

10

2

  1. 2

20

3

20

3

20

3

15

2

15

8

4

  1. 3

30

3

22

2,6

18

2,2

11

1,9

9

6

6

  1. 4

25

4

20

3

17

2,4

15

1,8

12

4

8

  1. 5

23

4

23

3

17

2,4

15

2

12

2

10

  1. 6

30

3

22

2,6

18

2,2

11

1,9

9

0

12

Температура испытания – 1000 0С

  1. 7

25

4

20

3

17

2,4

15

1,8

12

10

2

  1. 8

20

4

20

3

20

2,4

15

2

15

8

4

  1. 9

30

3

22

2,6

18

2,2

11

1,9

9

6

6

  1. 10

25

4

20

3

17

2,4

15

1,8

12

4

8

  1. 11

23

4

23

3

17

2,4

15

2

12

2

10

  1. 12

30

3

22

2,6

18

2,2

11

1,9

9

0

12

Температура испытания – 1100 0С

  1. 13

25

4

20

3

17

2,4

15

1,8

12

10

2

  1. 14

20

4

20

3

20

2,4

15

2

15

8

4

  1. 15

30

3

22

2,6

18

2,2

11

1,9

9

6

6

  1. 16

25

4

20

3

17

2,4

15

1,8

12

4

8

  1. 17

23

4

23

3

17

2,4

15

2

12

2

10

  1. 18

30

3

22

2,6

18

2,2

11

1,9

9

0

12

Примечание: ε1 - единичное обжатие в первой клети; t1 - междеформационная пауза после первой клети; ε2 - единичное обжатие во второй клети; t2 - междеформационная пауза после второй клети; ε3 - единичное обжатие в третьей клети; t3 - междеформационная пауза после третьей клети; ε4 - единичное обжатие в четвертой клети; t4 - междеформационная пауза после четвертой клети; ε5 - единичное обжатие в пятой клети; τв - время охлаждение на воздухе; τв.о - время охлаждение в воде.

Осуществили два варианта механических испытаний. По первому варианту опыты на сжатие образцов выпуклыми бойками проводили на автоматизированной установке «Gleeble 3500» с целью исследования реологии стали А1. В этих экспериментах на этапе активного нагружения при скоростях прокатки продольно-клинового стана произвели циклическое деформирование. В промежутках циклического деформирования после выключение электропривода установки образец оставался зажатым выпуклыми бойками, и активное нагружение сменялось стадией релаксации.

Испытание по второму варианту проводили для определения микроструктуры металла, получаемой в результате физического моделирования. В этом случае захваты установки после всех активных нагружения разводили, из контейнера вынимали образцы и в соответствия с планом эксперимента образцы охлаждали на воздухе и в воде (таблица 4.1).

Установка «Gleeble 3500» является полностью цифровой замкнутой системой термомеханических испытаний. В ее основе лежит программное обеспечение на базе простой в использовании ОС Windows и блок мощных процессоров, которые обеспечивают интерфейс для создания, проведения и обработки программ физического моделирования и термомеханических испытаний.

Система нагрева установки «Gleeble 3500» позволяет прямым пропусканием тока нагревать образцы со скоростью до 10000 оС/с и поддерживать постоянную равновесную температуру. Благодаря высокой теплопроводности захватов, которые держат образцы, комплекс «Gleeble 3500» может с высокой скоростью охлаждать образцы. Дополнительная система охлаждения позволяет достигать скорости охлаждения свыше 10000 оС/с на поверхности образца. Термопары и дополнительный инфракрасный пирометр передают сигналы для точного контроля температуры образцов.

Механическая система «Gleeble 3500» – это замкнутая, полностью интегрированная сервогидравлическая система, способная развивать усилие до 100 кН, максимальная скорость передвижной траверсы - 1000 мм/с. LVDT-датчики/датчики силы (тензометры) или бесконтактные лазерные экстензометры обеспечивают обратную связь для точной реализации программы механических испытаний. Все испытания могут быть осуществлены при пониженном давлении или в защитной атмосфере.

Механическая система позволяет исследователю использовать различные режимы управления в процессе любого испытания. Подобная гибкость позволяет моделировать многие термомеханические процессы. Программа может переключать управляющие переменные на любом этапе испытания.

Сердцем комплекса «Gleeble 3500» является цифровая система управления 3-ей серии. Она посылает сигналы для управления показателями термических и механических испытаний одновременно посредством цифровых термомеханических систем закрытого типа. Система «Gleeble 3500» может полностью работать как в автономном, так и в ручном режимах, либо комбинированно, если это необходимо, для достижения максимальной гибкости при испытании материалов.

Система компьютерного управления включает в себя настольный компьютер с ОС Windows и мощный промышленный компьютер, встроенный в консоль управления. Настольный компьютер с ОСWindows имеет гибкий многозадачный Графический Интерфейс промышленного стандарта для разработки программ моделирования и анализа полученных данных.

В процессе исследования образцы нагревали в контейнере установки «Gleeble 3500» до температуры 1100оС и выдерживали при этой температуре 15 минут. Такой нагрев обеспечил аустенизацию структуры металла образца. Нагретые образцы охлаждали до температуры испытания и испытовали в диапозоне температур 900 ÷ 1100оС с шагом нагрева 100оС. При проведении эксперимента варьировали режимы обжатия (таблица 4.1). При этом соблюдая основной закон прокатки, т.е. постоянство секундных объемов, определяли междеформационные паузы, получаемые при прокатке в пятиклетьевом продольно-клиновом стане. После испытания, деформированные образцы охлаждали в воде, а далее вырезали образцы для структурного исследования.

Шлифы для металлографического исследования готовили по традиционной методике на шлифовальных и полировочных кругах. Для травления образцов был использован раствор азотной кислоты в этиловом спирте.

Металлографический анализ провели, используя универсальный микроскоп NEOPHOT 32 (Karl Zeiss, Jena) (Германия). Микроскоп Neophot 32 предназначается для металлографической микроскопии и создания фотоснимков. Наблюдение может производиться методом светлого и темного поля, в поляризованном свете, с изменением кратностей увеличения. Увеличение микроскопа от 10 до 2000 крат. Микроскоп оснащен цифровым зеркальным фотоаппаратом Olimpus c выводом полученного изображения и сохранения снимков на компьютере.