Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_svetotekhnike_moi.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.22 Mб
Скачать

31. Расскажите о тепловых и полупроводниковых стартерах.

Тепловые (термобиметаллические) стартеры. Преимуществом этих стартеров является отсутствие первой предварительной стадии, так как контакты при отсутствии тока замкнуты; более высокий пик зажигания и более длительное время контактирования обычно порядка 2-3 с. Но у них есть и свои недостатки: они потребляют дополнительную мощность на поддержание нагревательного элемента в рабочем состоянии, более сложны по конструкции, более сложна схема их включения, они не сразу после отключения лампы готовы к работе. В силу этих причин их применяют только в особых случаях, например, для зажигания ламп в условиях низких температур.

Полупроводниковые стартеры. Существует ряд схем подобных стартеров. Все они работают по принципу ключа. Наиболее полно требованиям к стартерам отвечают полупроводниковые стартеры ждущего зажигания (рис. 6.2,в, РЭЗ/01). Они обеспечивают достаточный во времени нагрев электродов и размыкание в определенной фазе напряжения, что гарантирует величину и длительность импульса. Другие типы стартеров употребляются весьма редко ввиду сложности конструкции.

Рис. 6.2

32. Преимущества двухламповых схем включения.

На рис. 6.3 приведена схема двухлампового ПРА с расщепленной фазой, обеспечивающая высокий коэффициент мощности установки и уменьшение пульсаций суммарного светового потока ламп (рис. 6.3,а – схема; б – векторная диаграмма токов и напряжения сети; в – осциллограмма изменения световых потоков ламп (1) и (2) и суммарного потока (1+2)) [6,12].

Для того чтобы суммарный ток совпадал по фазе с напряжением сети, необходимо обеспечить в опережающей ветви сдвиг, равный сдвигу в отстающей, т.е. около 60°, при этом cos φ установки достигает значения 0,9...0,95, а глубина пульсаций общего потока уменьшается до 25%. Обычно сдвиг фаз лежит в пределах от 90 до 120°.

Рис. 6.3

33. Расскажите о способах включения лл на повышенной частоте и постоянном токе.

При питании ламп постоянным током полярность электродов остается неизменной, поэтому электроды лампы работают в неодинаковом режиме: электрод, являющийся анодом, перегревается, и для сохранения необходимого срока службы лампы требуются различные конструкции анода и катода. Но на практике такие лампы почти не выпускаются и нужно использовать стандартные. А для стандартных ламп приходится время от времени проводить переполюсовку ламп, чтобы износ электродов происходил равномерно.

Кроме того, при работе ламп на постоянном токе наблюдается явление катафореза. У катода положительные ионы ртути нейтрализуются, превращаясь в атомы ртути, и излишняя ртуть конденсируется на стенках трубки. В рабочем режиме плотность паров ртути по длине трубки получается неодинаковой, яркость свечения лампы уменьшается, и через несколько десятков часов работы лампы ее яркость может уменьшиться вдвое. Появление катафореза тоже вынуждает проводить переполюсовку через определенные промежутки времени.

В качестве балласта при питании ламп постоянным током применяют активное сопротивление либо в виде резистора, либо в виде лампы накаливания. Напряжение на активном балласте равно разности между напряжением сети и рабочим напряжением на лампе. Поэтому потери мощности в балласте могут в 1,5-2 раза превышать мощность лампы, по этой причине этот способ стабилизации лампы оказывается экономически невыгодным. Применение балластной лампы накаливания улучшает общую экономичность комплекта за счет дополнительного светового потока, созданного лампой накаливания.

Рассмотрим простейшие схемы включения люминесцентных ламп на постоянном токе. На рис. 6.11, а показана схема включения люминесцентной лампы с предварительным нагревом электродов, работающей от сети с напряжением, достаточным для ее зажигания.

Рис. 6. 11

Предварительный нагрев электродов обеспечивается при замыкании выключателя В2. Переход из пускового режима в рабочий произойдет, когда напряжение зажигания лампы снизится и станет меньше напряжения сети. В рабочем режиме выключатель В2 разомкнут.

Более рациональная схема приведена на рис. 6.11, б. Для уменьшения требуемого напряжения питания и возможности использования стандартных ламп без проводящей полосы в цепь лампы включают дроссель и применяют стартер постоянного тока, работающий на принципе теплового стартера. При подаче на лампу напряжения питания начинается предварительный подогрев ее электродов. Одновременно с этим тепловой элемент стартера обеспечивает с некоторой задержкой времени размыкание контактов стартера. При разрыве контактов стартера за счет индуктивности дросселя возникает импульс напряжения, необходимый для зажигания лампы.

Работа люминесцентных ламп на повышенной частоте. С ростом частоты питающего напряжения значения токов, напряжений и коэффициентов мощности ламп с различными типами балластов (R, L, С) сближаются между собой, а начиная с частот 800-1000 Гц, практически перестают зависеть от типа балласта. Форма кривых тока и напряжения для всех типов балластов показана на рис. 6.12, где первая колонка относится к индуктивному балласту, вторая – к резистивному, а третья – к емкостному.

Рис. 6.12

На рис. 6.13 показана структурная схема осветительной установки  с  питанием  ламп на   повышенной   частоте.  На рис. 6.14 приведены простые схемы включения ламп на повышенной частоте.

Рис. 6.13

На рис.6.14, а,б приведены резонансные схемы быстрого зажигания.

Рис. 6.14

Необходимое напряжение холостого хода ПРА создается за счет резонансных явлений в цепи индуктивности и емкости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]