- •Содержание
- •Введение
- •1. Обоснование данной работы
- •2. Проблемные задачи в решении данной работы
- •3. Общие сведения по аналогичным промышленным устройствам
- •Классификация дуговых печей
- •4. Исследование работы аналогичных устройств
- •5. Работа и принцип действия устройств
- •Автоматическое регулирование
- •Устройство для электромагнитного перемешивания металла
- •6. Номенклатура электрических аппаратов в устройстве Механическое оборудование дуговой печи
- •Электрооборудование печи
- •7. Анализ электрических схем аналогичных промышленных устройст
- •8. Определение основных электрических параметров
- •9. Выбор и обоснование электрической схемы
- •10. Расчет и выбор силовых элементов дсп
- •11. Расчет и выбор элементов управления дсп
- •12. Описание работы спроектированной электрической схемы
- •13. Технические и технологические требования к размещению эо
- •14. Компановка электрических аппаратов на дсп
- •15. Техника безопасности и противопожарные мероприятия
- •Список литературы
3. Общие сведения по аналогичным промышленным устройствам
Электрический нагрев имеет широкое распространение в различных отраслях промышленности. Электрические печи используются как агрегаты для производства высококачественной стали, ферросплавов, цветных металлов, для нагрева под термообработку и термохимическую обработку, для нагрева под ковку и штамповку.
Преимущество электронагрева по сравнению с нагревом в пламенных печах заключается в следующем: возможность достижения высоких температур; обеспечение больших скоростей нагрева; обеспечение высокой точности и равномерности нагрева вследствие легкости регулирования электрического и температурного режимов; возможность более надежной герметизации электропечей и в связи с этим обеспечение возможности нагрева в вакууме, нейтральных и контролирующих атмосферах, что позволяет вести нагрев и плавку при низком угаре металла и более полного использования легирующих добавок; возможность широкой механизации и автоматизации технологических процессов. Основным и единственным недостатком электронагрева является относительная дороговизна электроэнергии. Электрические печи подразделяются на: дуговые, индукционные, диэлектрические, печи сопротивления. В последнее время применяются электронные и плазменные печи.
При дуговом нагреве превращение электрической энергии в тепловую происходит в электрической дуге. Эти печи делятся на три группы: с зависимой, независимой и закрытой дугой.
В печах первой группы электрическая дуга возникает между одним или несколькими электродами и нагреваемым металлом. В этом случае основная часть мощности от электрической дуги передается поверхности металла излучением, а тепло в массе металла распространяется за счет теплопроводности и конвекции (дуговые электросталеплавильные печи).
В печах второй группы электрическая дуга горит между двумя электродами на некотором расстоянии от металла. Поверхность металла в этом случае получает тепло исключительно в результате лучеиспускания.
В печах третьей группы электрическая дуга горит под слоем твердой шихты между одним или несколькими электродами и расплавом. Печи с закрытой дугой относятся к агрегатам смешанного типа, в которых нагрев осуществляется электрической дугой или по способу сопротивления в зависимости от данного технологического процесса.
В зависимости от масштабов производства, требований, предъявляемых к качеству выплавляемого металла и целого ряда других факторов, в цехах заготовительного и фасонного литья цветных металлов применяют различные типы плавильных печей.
По виду используемой для плавки сплавов энергии все плавильные печи делят на топливные и электрические. Топливные печи подразделяют на тигельные, отражательные и шахтно-ванные. Электрические печи классифицируют в зависимости от способа преобразования электрической энергии в тепловую. В литейных цехах применяют печи сопротивления, индукционные, электродуговые, электронно-лучевые и плазменные.
В электрических печах сопротивления нагрев и расплавление шихты осуществляются за счет тепловой энергии, поступающей от электронагревательных элементов, установленных в своде или в стенках плавильной печи. Эти печи применяют для плавки алюминиевых, магниевых, цинковых, оловянных и свинцовых сплавов.
Индукционные печи по принципу работы и конструкции подразделяют на тигельные и канальные. Тигельные печи в зависимости от частоты питающего тока классифицируют на печи повышенной [ (0,15-10) - 10^6 пер/с] и промышленной частоты (50 пер/с).
Независимо от частоты питающего тока принцип работы всех индукционных тигельных печей основан на индуктировании электромагнитной энергии в нагреваемом металле (токи Фуко) и превращении ее в тепловую. При плавке в металлических или других тиглях, изготовленных из электропроводных материалов, тепловая энергия передается к нагреваемому металлу также стенками тигля. Индукционные тигельные печи применяют для плавки алюминиевых, магниевых, медных, никелевых сплавов, а также сталей и чугунов.
Индукционные канальные печи используют для плавки алюминиевых, медных, никелевых и цинковых сплавов. Помимо плавильных печей, применяют также индукционные канальные миксеры, служащие для рафинирования и поддержания температуры жидкого металла на заданном уровне. Плавильно-литейные комплексы, состоящие из
плавильной печи - миксера - литейной машины, используют при литье слитков из алюминиевых, магниевых и медных сплавов непрерывным методом. Принцип тепловой работы канальных индукционных печей аналогичен принципу работы силового электрического трансформатора тока, состоящего, как известно, из первичной катушки, магнитопровода и вторичной катушки. Роль вторичной катушки в печи играет короткозамкнутый канал, заполненный жидким металлом. При пропускании тока через индуктор печи (первичная катушка) в заполненном жидким металлом канале индуцируется электрический ток большой величины, который разогревает находящийся в нем жидкий металл. Тепловая энергия, выделяемая в канале, нагревает и расплавляет металл, находящийся над каналом в ванне печи.
Электродуговые печи по принципу передачи тепла от электрической дуги к нагреваемому металлу подразделяются на печи прямого и косвенного нагрева.
В печах косвенного нагрева большая часть тепловой энергии от горячей дуги передается к нагреваемому металлу излучением, а в печах прямого действия - излучением и теплопроводностью. Печи косвенного действия применяют в настоящее время ограниченно. Печи прямого действия (электродуговые вакуумные с расходуемым электродом) используют для плавки тугоплавких, химически активных металлов и сплавов, а также легированных сталей, никелевых и других сплавов. По конструкции и принципу работы электродуговые печи прямого действия делятся на две группы: печи для плавки в гарнисажном тигле и печи для плавки в изложнице или кристаллизаторе.
Электронно-лучевые плавильные печи применяют для плавки тугоплавких и химически активных металлов и сплавов на основе ниобия, титана, циркония, молибдена, вольфрама, а также для ряда марок сталей и других сплавов. В основе принципа электронно-лучевого нагрева лежит преобразование кинетической энергии потока электронов в тепловую при их встрече с поверхностью нагреваемой шихты. Выделение тепловой энергии происходит в тонком поверхностном слое металла. Нагрев и плавление проводят в вакууме при остаточном давлении 1,3 - 10^-3 Па. Электронно-лучевую плавку используют для получения слитков, и фасонных отливок. При электроннолучевой плавке можно значительно
перегревать жидкий металл и длительное время выдерживать его в жидком состоянии. Это преимущество позволяет эффективно рафинировать расплав и очищать его от ряда примесей. С помощью электронно-лучевой
Плавки из металла могут быть удалены все примеси, давление пара которых существенно превышает давление пара основного металла. Высокая температура и глубокий вакуум способствуют также очистке металла от примесей за счет термической диссоциации оксидов нитридов и других соединений, находящихся в металле. Печь электрошлакового переплава ЭШП по принципу работы представляет собой печь сопротивления косвенного нагрева, в которой источником тепла является ванна расплавленного шлака заданного химического состава. Переплавляемый металл в виде расходуемого электрода погружают в слой (ванну) жидкого электропроводного шлака. Через расходуемый электрод и шлак пропускают электрический ток. Шлак разогревается, торец расходуемого электрода оплавляется и капли жидкого металла, проходя через слой химически активного шлака, очищаются в результате контакта с ним и формируются в изложнице в виде слитка. Шлак защищает жидкий металл - от взаимодействия с атмосферой воздуха. Печи ЭШП в основном применяют для получения слитков из высококачественных сталей, жаропрочных, нержавеющих и других сплавов. Метод ЭШП используют также для производства крупных фасонных отливок: коленчатых валов, корпусов, арматуры и других изделий.
В плазменных плавильных печах источником тепловой энергии является поток нагретого до высокой температуры ионизированного газа (плазменная дуга), который при соприкосновении с металлом нагревает и расплавляет его. Для получения потока плазмы плавильные печи оборудуют специальными устройствами - плазмотронами. Плазменный способ нагрева и плавления сплавов применяют в печах ванного типа, в плавильных установках для получения слитков в кристаллизаторе и для плавки металлов в гарнисажном тигле.
Плазменные печи ванного типа в основном применяют для плавки сталей, а также сплавов на основе никеля. Плазменные печи для плавки в кристаллизаторе могут использоваться для получения слитков из сталей, бериллия, молибдена, ниобия, титана и других металлов. Плазменные печи для плавки в гарнисажном тигле предназначены для фасонного литья сталей, тугоплавких и химически активных металлов.
Электрические печи широко применяются в литейных цехах. Они используются для плавки сплавов, термообработки отливок, сушки литейных форм, стержней и т.п. В электропечах значительно легче производить регулировку температуры в рабочем пространстве с достаточно высокой точностью В электропечах намного легче создать требуемую печную атмосферу. Рабочее пространство электропечей легче герметизировать. Это позволяет осуществить нагрев материала в защитных атмосферах, в том числе и в вакууме. Электрические печи периодического действия с конвективным режимом теплообмена могут работать в замкнутом цикле рециркуляции печной атмосферы, что значительно повышает к. п. д. печей и создает условия тепловой обработки материала (изделий) в неизменной печной атмосфере заданного состава.
Превращение электрической энергии в тепловую в электропечах производят следующим образом:
в твердых, жидких или газообразных проводниках электрического тока (резисторах) при приложении к ним внешней Э.Д. С.;
в рабочем теле при помещении его в переменное электромагнитное поле и индуцировании в нем Э.Д. С.;
в поверхностном слое рабочего тела при его бомбардировке потоком электронов, ускоренных в вакууме;
в поверхностном слое рабочего тела при воздействии на него светового электромагнитного потока сверхвысокой плотности;
в газе при его ионизации и изменении кинетической энергии воздействием внешних электрических сил (Э.Д.С., электромагнитного поля и т.д.).
В зависимости от способа превращения электроэнергии в тепловую, печи подразделяются на дуговые, индукционные, сопротивления, плазменные, электрошлаковые, солевые, электроннолучевые и аэродинамического нагрева.
Классификация электрических печей по способу преобразования электрической энергии в тепловую.
Дуговые печи используют в качестве плавильных. Тепловая энергия в этих печах генерируется в газообразном проводнике при приложении к нему разности электрических потенциалов. При воздействии разности потенциалов возникает интенсивная термоэлектронная эмиссия. Электроны ускоряются и производят ударную ионизацию молекул газа. Газ частично ионизируется, его электросопротивление резко падает. Все это приводит к "загаранию" дуги в данной зоне. При атмосферном давлении температура кратера дуги достигает значений 3000-4000 К, а температура в канале электрической дуги - 5000-6000К.
