- •Предисловие
- •Введение
- •Глава 1 Основы технологии передачи цифровых сигналов
- •1.1. Особенности канала связи
- •1.1.1. Емкость канала связи
- •1.1.2. Стандартный телефонный канал
- •1.2. Импульсно-кодовая модуляция (икм)
- •1.3. Методы мультиплексирования потоков данных
- •1.3.1. Частотное мультиплексирование
- •1.3.2. Временное мультиплексирование
- •1.3.4. Волновое мультиплексирование
- •1.4. Кодирование цифровых данных в икм системах
- •1.4.1. Практические методы формирования цифровой последовательности
- •1.5. Цифровые иерархии и технология pdh
- •1.5.5.1. Характеристики промышленных систем pdh
- •Глава 2 Синхронные цифровые сети на основе технологии sdh Введение
- •2.1. Принципы построения синхронной цифровой иерархии
- •2.1.4. Обобщенная схема мультиплексирования потоков в sdh (третья редакция)
- •2.1.5. Детальный пример схемы формирования модуля stm-1
- •2.1.8.5. Указатели au-n
- •2.1.9. Структура заголовков фреймов stm-n
- •2.1.9.2. Структура заголовка soh для stm-n
- •2.1.9.3. Структура маршрутных заголовков рон
- •2.1.10.2. Транспортировка vc-n с помощью фрейма е4
- •2.2. Введение в функциональную архитектуру транспортных сетей
- •2.2.4.1. Функция физического интерфейса sdh
- •2.2.4.2. Функция окончания регенераторной секции
- •2.2.4.3. Функция окончания мультиплексной секции
- •2.2.4. Возможность мониторинга в рамках транспортной модели
- •2.3. Функциональные модули реальных сетей sdh
- •2.3.3.2. Мультиплексор ввода/вывода
- •2.3.6.3. Методы кросс-коммутации и взаимодействие сетей sdh
- •2.4. Базовые топологии реальных сетей sdh
- •2.4.1. Топология "точка-точка"
- •2.4.2. Топология "последовательная линейная цепь"
- •2.4.5. Топология "ячеистая сеть"
- •2.5. Архитектура реальных сетей sdh
- •2.6. Методы защиты синхронных потоков и оборудования sdh
- •2.6.2. Функционально-логические методы защиты синхронных потоков
- •2.6.2.2. Схема защиты с разделением ресурсов каналов типа ms spRing
- •2.6.2.4. Схема защиты соединений подсети типа sncp
- •2.6.2.5. Схема защиты ms spRing с разделением ресурсов каналов для 4-волоконного кольца
- •2.6.3. Взаимодействие элементов архитектуры сетей sdh при наличии защиты
- •2.6.3.1. Основные термины и определения при взаимодействии колец
- •2.6.3.2. Основы взаимодействия колец при использовании схем защиты
- •2.6.4. Общие итоги и возможности использования схем защиты
- •2.7. Аппаратурная реализация функциональных блоков сетей sdh
- •2.7.1. Схемная реализация и характеристики синхронных мультиплексоров
- •2.7.1.1 Реализация мультиплексоров уровня stm-1 компании Nortel
- •2.7.1.2. Реализация мультиплексоров уровня stm-4 компании Marconi
- •2.7.1.3. Реализация мультиплексоров уровня stm-4/16 компании Alcatel
- •2.7.1.4. Реализация мультиплексоров уровня stm-64 компании Nortel
- •2.7.1.5. Реализация кросс-коммутаторов типа 1641 sx компании Alcatel
- •Глава 3 Технология sonet Введение
- •3.1. Синхронная цифровая иерархия sonet
- •3.1.1. Уровни иерархии sonet
- •3.2. Схема мультиплексирования и формирование фрейма sonet
- •3.3. Функциональные элементы и структуры систем sonet
- •3.3.1. Интерфейсы, или сервисные адаптеры sonet
- •3.3.2. Стандартная конфигурация sonet
- •3.4. Функциональные модули и аппаратура сети sonet
- •3.4.1. Типы функциональных модулей
- •3.4.2. Аппаратное обеспечение сетей sonet
- •Глава 4 Радиорелейные и спутниковые системы sonet/sdh
- •4.1. Структурные схемы радиорелейных и спутниковых систем sdh
- •4.2. Особенности радиорелейных линейных систем sdh
- •4.3. Особенности спутниковых систем sdh
- •4.3.1. Схема мультиплексирования, структура мультифрейма и состав модулей sstm-XX
- •4.4. Возможности аппаратурной реализации радиорелейных и спутниковых систем sdh
- •Глава 5 Синхронизация цифровых сетей
- •5.1. Основные понятия
- •5.2. Стандарты и нормы синхронизации цифровых сетей связи
- •5.3. Общее решение задачи синхронизации
- •5.4. Характеристики хронирующих источников
- •5.5. Оборудование, используемое для синхронизации сети
- •5.5.2. Системы точного времени глонасс и gps
- •5.5.2.1. Система глонасс
- •5.5.2.2. Система gps
- •5.6. Синхронизация цифровых сетей sdh
- •5.6.1. Особенности синхронизации сетей sdh
- •5.6.1.1. Источники синхронизации сетей sdh
- •5.6.1.2. Качество хронирующего источника
- •5.6.2. Примеры построения сети синхронизации
- •5.6.2.1. Пример синхронизации кольцевой сети sdh
- •5.6.2.2. Пример синхронизации ячеистой сети sdh
- •Глава 6
- •6.1. Четырехуровневая модель управления сетью
- •6.2. Сеть управления телекоммуникациями tmn
- •6.2.2.3. Общий аспект архитектуры tmn
- •6.2.2.4. Логическая многоуровневая архитектура tmn
- •6.2.2.5. Примеры реализации dcn в сетях sdh
- •6.3. Общая схема управления сетью sdh
- •6.3.1 Подсеть sms сети управления smn
- •6.3.2. Функции Управления
- •6.3.3.2. Внутрисистемные взаимодействия
- •6.3.4. Интерфейсы взаимодействия
- •6.4.2.1. Обработка аварийных сообщений
- •6.4.2.2. Управление рабочими характеристиками
- •6.4.2.3. Управление конфигурацией
- •6.4.2.4. Управление маршрутизацией потоков данных в сети
- •6.4.2.5. Управление программой обслуживания сети и тестирования ее элементов
- •6.4.2.6. Управление безопасностью системы
- •6.5. Физический интерфейс g.703
- •6.5.1. Физические и электрические характеристики интерфейса g.703
- •6.5.1.4. Интерфейс сигнала синхронизации 2048 кГц
- •Глава 7 Основные элементы расчета сетей sdh
- •7.1. Этапы проектирования и Техническое задание на проектирование сети
- •7.2. Выбор оборудования и схемы функциональной связи узлов
- •7.3. Формирование сети управления и синхронизации
- •7.4. Заключение и некоторые дополнения
- •Глава 8 Введение в технологию atm
- •8.1. Основные сведения
- •8.1.4. Скорости передачи
- •8.1.5. Размер пакета
- •8.1.6. Стандартизация atm
- •8.1.7. Организация сети atm
- •8.1.7.2. Топологическая модель канала atm
- •8.1.7.3. Топология сетей atm
- •8.1.8. Трафик atm и адресация сообщений
- •8.1.8.1. Виртуальная адресация
- •8.1.8.2. Мультиплексирование и коммутация
- •8.1.8.3. Типы используемых соединений
- •8.2. Модель b-isdn и уровни atm
- •8.3. Взаимодействие уровней aal, atm и атм-сети
- •8.4. Ячейки atm
- •8.4.2. Особенности операций с ячейками
- •8.5. Уровень адаптации atm
- •8.5.1.1. Блок pdu для aal-1
- •8.5.5. Дополнительные классы трафика
- •8.6. Коммутация потоков atm ячеек
- •8.7. Использование сети atm в качестве магистральной
- •8.7.1.1. Соединение по требованию
- •8.7.1.2. Адресация в сетях atm
- •8.7.1.3. Процедура установления и разрыва соединения
- •8.8. Взаимодействие сети atm и лвс
- •8.8.1.2. Описание сервиса lan-эмуляции
- •8.8.1.3. Уровневая архитектура lan-эмуляции
- •8.8.1.6. Этапы и сервисные функции lan-эмуляции
- •8.8.2. Технология мроа
- •8.8.2.1. Компоненты мроа
- •8.8.2.2. Потоки информации и управления в схеме организации мроа
- •8.8.2.3. Операции, осуществляемые в системе мроа
- •8.8.2.4. Пример оптимального (короткого) соединения в системе мроа
- •8.9. Отображение atm потоков ячеек на физический уровень
- •8.9.1.2. Отображение ячеек atm на виртуальные контейнеры
- •8.9.2. Упаковка ячеек atm в оболочку полезной нагрузки sonet
- •8.9.3. Упаковка ячеек atm в фреймы pdh
- •8.9.3.1. Упаковка ячеек в фреймы е1
- •8.9.3.2. Упаковка ячеек в фреймы ез
- •8.9.3.3. Упаковка ячеек в фреймы е4
- •8.10. Управление трафиком и качество обслуживания в сетях atm
- •8.11. Заключение
- •Глава 9 Введение в оптические цифровые сети
- •9.1. Оптическое волокно как среда передачи
- •9.1.1. Основные понятия, важные при использовании оптического волокна
- •9.1.2. Свойства волокна, основанные на законах геометрической оптики
- •9.1.2.1. Полное внутреннее отражение
- •9.1.2.2. Числовая апертура
- •9.1.3. Свойства волокна, основанные на законах электромагнитного поля
- •9.1.3.1. Моды колебаний
- •9.1.3.3. Диаметр поля моды
- •9.1.3.4. Число мод многомодового волокна
- •9.1.4. Профиль изменения показателя преломления
- •9.1.5. Основные характеристики оптических потерь волокна
- •9.1.5.1. Общая функция потерь
- •9.1.6.1. Дисперсия
- •9.1.6.2. Методы компенсации дисперсии
- •9.1.7.2. Вынужденное неупругое рассеяние
- •9.1.7.3. Модуляционная неустойчивость
- •9.1.7.4. Четырехволновое смешение
- •9.1.8. Оптические солитоны
- •Глава 10 Функциональные элементы оптических сетей
- •10.1. Оптические усилители
- •10.1.1. Основные особенности оптических усилителей
- •10.1.1.1. Принцип действия оптического усилителя
- •10.1.1.2. Коэффициент усиления среды и усилителя
- •10.1.1.3. Мощность насыщения Рн
- •10.1.1.4. Источники шума и динамический диапазон
- •10.1.2. Полупроводниковые оптические усилители
- •10.1.2.3. Характеристики ппоу
- •10.1.2.4. Применение ппоу
- •10.1.3. Оптические усилители, использующие нелинейные явления в ов
- •10.1.4. Оптические усилители на ов, легированном рзэ
- •10.1.4.2. Усилители для окна 1300 нм
- •10.1.4.3. Усилители для окна 1550 нм
- •10.1.5. Практическая реализация оптических усилителей
- •10.1.5.1. Реализация усилителей edfa
- •10.1.6. Схемы и параметры промышленных оптических усилителей
- •10.1.7. Разработка сверхширокополосных оптических усилителей
- •10.2. Оптические кросс-коммутаторы
- •10.2.1. Типы базовых оптических кросс-коммутаторов
- •10.2.1.1. Механические оптические коммутаторы
- •10.2.1.2. Электрооптические коммутаторы
- •10.2.1.3. Термооптические коммутаторы
- •10.2.1.4. Оптоэлектронные коммутаторы на основе ппоу
- •10.2.1.5. Интегральные активно-волноводные коммутаторы
- •10.2.1.6. Коммутаторы на фотонных кристаллах
- •10.2.1.7. Коммутаторы на многослойных световодных жидкокристаллических матрицах
- •10.2.2.1. Логика коммутации базовых элементов размера 2x2
- •10.2.2.2. Древовидные сети типа Баньян
- •10.2.3. Особенности построения многокаскадных оптических коммутаторов
- •10.2.3.1. Схема матричного кросс-коммутатора
- •10.2.3.2. Схема ксс Бенеша
- •10.2.3.3. Схема ксс Шпанке-Бенеша
- •10.2.3.4. Схема ксс Шпанке
- •10.3. Оптические волновые конверторы
- •10.3.1. Типы волновых конверторов
- •10.3.1.1. Оптоэлектронные конверторы
- •10.3.1.2. Конверторы на основе оптической перекрестной модуляции
- •10.3.1.3. Конверторы на основе эффекта четырехволнового смешения
- •10.3.1.4. Конверторы на основе других нелинейных эффектов
- •10.4. Оптические модуляторы
- •10.4.1. Форматы линейых кодов
- •10.4.2. Методы модуляции оптической несущей
- •10.4.2.1. Непосредственная модуляция оптической несущей
- •10.4.2.2. Модуляция с использовавнием внешнего модулятора
- •10.4.3. Типы оптических модуляторов
- •10.4.3.1. Акустооптические модуляторы
- •10.4.3.2. Электрооптические модуляторы
- •10.4.3.3. Электрооптические модуляторы, использующие ппоу
- •10.5. Оптические мультиплексоры ввода-вывода
- •10.5.1. Структура оптических мультиплексоров первого поколения
- •10.5.3. Оптические технологии ввода-вывода несущих
- •10.5.3.1. Основные требования, предъявляемые к фильтрам ввода-вывода
- •10.5.3.2. Фильтры на основе оптоволоконных дифракционных решеток Брэгга
- •10.5.3.3. Фильтры на основе резонатора Фабри-Перо
- •10.5.3.4. Интерференционные фильтры на тонких пленках
- •10.5.3.5. Поляризационные фильтры на жидких кристаллах
- •10.5.3.6. Акусто-оптические перестраиваемые фильтры
- •Глава 11 Новые технологии оптических сетей связи
- •11.1. Основы технологии wdm
- •11.1.1. Введение в технологию wdm
- •11.1.2. Модель взаимодействия транспортных технологий
- •11.1.3. Блок-схема систем с wdm
- •11.1.4. Канальный (частотный) план
- •11.1.4.2. Перспективный канальный план
- •11.1.5. Классификация wdm на основе канального плана
- •11.1.6. Технологии и схемы реализации мультиплексных модулей wdm
- •11.1.6.1. Технология мультиплексирования на основе интерференционных фильтров
- •11.1.6.2. Технология мультиплексирования на основе явления угловой дисперсии
- •11.1.6.3. Современные технологии мультиплексирования
- •11.1.8. Практический пример 8-канального мультиплексора wdm
- •11.2. Основы солитонных линий связи
- •11.2.1. Экспериментальные солитонные линии связи
- •11.2.2. Использование солитонных генераторов на существующих линиях sdh
- •11.2.3. Перспективы использования солитонных линий связи
- •11.2.3.1. Перспективы повышения скорости передачи
- •11.2.3.2. Перспективы увеличения длины регенерационного участка
- •11.3. Перспективы использования полностью оптических сетей связи
- •Глава 12
- •Кабелей
- •12.1. Классификация типов промышленных оптических волокон
- •12.1.1. Классификация многомодовых волокон
- •12.1.3. Классификация волокон по профилю показателя преломления
- •12.1.4. Классификация волокон по характеристике дисперсии
- •12.1.5. Классификация специальных типов волокон
- •12.2. Характеристики промышленных оптических волокон
- •12.2.2. Основные параметры одномодовых волокон
- •12.2.4. Применение волокна для компенсации дисперсии
- •12.2.5. Оптическое волокно, сохраняющее состояние поляризации
- •12.3. Типы и характеристики промышленных оптических кабелей
- •12.3.1. Классификация типов оптических кабелей
- •- Наружной прокладки (outdoor),
- •- Специальные.
- •12.3.1.1. Кабели внутренней прокладки
- •12.3.1.2. Кабели наружной прокладки
- •12.3.1.3. Специальные кабели
- •12.3.2. Типовые конструкции оптических кабелей
- •12.3.3. Основные параметры промышленных оптических кабелей
- •12.3.4. Оптические кабели воздушной подвески
- •12.3.4.1. Типы кабелей, свзанных с грозотросом
- •- Навиваемые на грозотрос (Wraped);
- •12.4. Маркировка оптических кабелей
- •12.4.1. Маркировка промышленных оптических кабелей
- •12.4.1.2. Маркировка кабелей зао "сокк"
- •12.4.1.3. Маркировка кабелей зао нф "Электропровод"
- •12.4.1.4. Маркировка кабелей по германскому национальному стандарту din
- •12.4.1.5. Маркировка кабелей компании Fujikura
- •12.4.2. Предложения по унификации кодировки и маркировки оптических кабелей 12.4.2.1. Предложение по кодировке кабелей для баз данных
- •12.4.2.2. Предложения по маркировке промышленных кабелей
- •12.4.2.3. Унифицированная маркировка кабеля
- •1) Окнзк-ц(сп)-б(сгл)-пэ(13,5)-ом(2/3)-16(0,34/0,21)
- •2) Окнзл-ц(сп)-по(1,0)-пэ(15,0)-ом(2/3)-24(0,34/0,20)
- •3) Окнзр-ц(ст)-по(1,0)-2с(16/1,6)-пэ(15,5)-ом(2/3)-24(0,34/0,20)
- •Глава 13 Стандарты и терминология цифровых сетей
- •13.1.2. Краткий обзор стандартов sdh и pdh
- •13.1.3. Краткий обзор стандартов волоконно-оптических сетей
- •13.1.5.1. Стандарты на оптическое волокно и вок
- •13.1.5.2. Стандарты на оптические функциональные компоненты и системы
- •13.1.5.3. Стандарты на оптические транспортные сети и волс
- •13.2. Терминология цифровых сетей
- •13.2.1. Истоки появления новой терминологии
- •13.2.2. Об истоках разногласий в терминологии
- •13.2.2.1. Замечание о терминах, используемых в технологиях pdh и sdh
- •13.2.2.2. Замечание об использовании и переводе термина atm
- •13.2.3. Некоторые общие предложения по выбору терминологии
- •13.2.4. Некоторые предложения по выбору терминологии в цифровых технологиях
- •Заключение
- •Список используемых сокращений
- •Оглавление
- •Глава 1. Основы технологии передачи цифровых сигналов (технология pdh) 9
- •Глава 2. Синхронные цифровые сети на основе технологии sdh 42
- •Глава 3. Основы синхронной технологии sonet 151
- •Глава 4. Радиорелейные и спутниковые системы sonet/sdh 166
- •Глава 5. Синхронизация цифровых сетей 176
- •Глава 6. Управление сетью: функционирование, администрирование и обслуживание 191
- •Глава 8. Введение в технологию atm 240
- •Глава 9. Введение в оптические синхронные цифровые сети 283
- •Глава 10. Функциональные элементы оптических сетей 307
- •Глава 11. Новые технологии оптических сетей связи 359
- •Глава 12. Характеристики промышленных оптических волокон и кабелей 383
- •Глава 13. Стандарты и терминология цифровых сетей 412
9.1. Оптическое волокно как среда передачи
В глобальных цифровых сетях связи (ГСС), как и в ЛВС, для передачи сигнала используются различные среды: эфир (в радиосистемах), медные провода (в ТФОП и ЛВС), медные кабели (в ТФОП и ЛВС), волоконно-оптические кабели (ВОК) (в ТФОП, ЛВС и ГСС). Из них в ГСС и ТФОП в последнее время все большее распространение получают ВОК. Это вызвано определенными преимуществами оптического кабеля, основные из них:
широкая полоса пропускания, позволяющая передавать сигналы со скоростью до десятков Тбит/с и выше;
низкий уровень потерь сигнала при распространении, позволяющий передавать сигналы без регенерации на расстояние порядка 200-300 км.;
нечувствительность к электромагнитным помехам, позволяющая прокладывать ВОК в мес тах с высоким уровнем таких помех, в том числе использовать для этой цели ЛЭП и опоры для контактной силовой сети.
Другие преимущества, такие, как малые масса и размеры ВОК, его пожаробезопасность, а также значительная сложность перехвата передаваемых сообщений (на фоне снижения цен практически до уровня цен на медные кабели) делают их использование еще более привлекательным.
Если учесть, что скорость передачи первого уровня иерархии SDH - технологии, пришедшей на смену PDH, составляет 155 Мбит/с, а также то, что сети SDH заменяют в настоящее время тысячи километров ТФОП, становится понятным, почему ВОК используется как единственная перспективная среда передачи сигнала в транспортных синхронных цифровых сетях SDH.
9.1.1. Основные понятия, важные при использовании оптического волокна
9.1.1.1. Физические понятия
В отличие от медного провода переносчиком сигнала в ОВ является не электрический ток, а световой луч, распространиение которого в прозрачной среде ОВ как луча (или волны) должно подчиняться законам оптики. Законы оптики различны в зависимости от того, в каких рамках справедливости: линейной или нелинейной оптики - они рассматриваются. Свет, в соответствии с кор-пускулярно-волновым дуализмом, может рассматриваться как волна, тогда к нему применимы законы линейной и нелинейной оптики, или как поток частиц - фотонов [167], который имеет квантовую природу: может рождаться, поглощаться, превращаться в другие частицы, подчиняясь законам квантовой механики (значит, к свету в этом случае должны применяться законы квантовой оптики).
Для понимания особенностей распространения света в рамках линейной волновой оптики достаточно вспомнить законы: прямолинейного распространения света, независимости световых пучков, преломления и отражения света на границе раздела сред и законы поглощения [167].
Для прозрачной среды процесс распространения света неотделим от процесса взаимодействия луча со средой, если учесть, что свет не просто луч, а электромагнитное излучение определенной длины волны, взаимодействующее со средой в процессе распространения. Его поведение подчиняется законам электромагнитного взаимодействия и описывается волновыми функциями, являющимися решениями системы уравнений Максвелла. Придется вспомнить такие понятия, как поляризация, мода колебаний, двойное лучепреломление, затухание, вызванное рассеянием и поглощением, дисперсия и др., которые могут быть рассмотрены как в рамках линейной, так и нелинейной волновой оптики.
Наконец, свет - это поток фотонов (частиц или корпускул), взаимодействие которых со средой, как отмечалось, подчиняется законам квантовой оптики. Для понимания особенностей взаимодействия в этом случае нужно иметь в виду, что источником излучения в аппаратуре синхронных цифровых сетей является лазер, интенсивность излучения которого значительно выше интенсивности обычных источников света, что приводит к необходимости учета не только кван-
товых, но и нелинейных эффектов [175]. Достаточно вспомнить такие нелинейные эффекты, как: нелинейное преломление, фазовую самомодуляцию, фазовую кросс-модуляцию, вынужденное неупругое рассеяние и некоторые другие [168], чтобы понять, насколько усложнится анализ таких систем на физическом уровне.
Указанное выше требует в целом довольно серьезных знаний, которыми располагают далеко не все читатели, занимающиеся построением волоконно-оптических систем передачи (ВОСП). Положение усугубляется еще и тем, что в ряде доступных изданий и журнальных публикаций авторы довольно свободно используют не совсем привычную или же непонятную "оптическую" терминологию [33, 169, 176, 177]. Чтобы как-то облегчить восприятие этого нового для связистов "жаргона" автор попытался, не вдаваясь глубоко в подробности описания указанных законов и эффектов, "на пальцах" (в меру своего понимания) кратко пояснить, что и как, на чем они основаны и чем обусловлены основные свойства волокон, важные для систем связи.
9.1.1.2. Другие важные особенности
Оптическое волокно в простейшем случае состоит из сердцевины и оболочки. Они имеют разные (хотя и близкие по величине) в простейшем случае ступенчато изменяющиеся показатели преломления, например пс и по6, соответственно. Сердцевина при этом используется как собственно среда передачи, а оболочка используется для создания границы раздела между ней и сердцевиной, как между двумя физическими средами. Эта граница формирует физический канал волноводного типа - световод, по которому и распространяется световой луч - переносчик передаваемого информационного сигнала.
Оптическое волокно может быть пластмассовым и стеклянным [170], однако в настоящее время используется, как правило, волокно, изготовленное из кварцевого стекла (SiO2), имеющее по сравнению с другими стеклами меньшее затухание.
В связи с возможной путаницей понятий приведем пару определений понятия "стекло". По определению Комиссии по терминологии бывшей АН СССР: "Стеклами называются все рентге-ноаморфные тела, получаемые путем переохлаждения расплава ... обладающие, в результате постепенного увеличения вязкости, механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым". В учебнике [178] это определение формулируется так: "Стекло - это квазиравновесная, изотропная, структурно-неупорядоченная система, обладающая механическими свойствами твердых тел, например упругостью формы. Среда, в которой могут распространяться продольные и поперечные упругие волны". Важным для нас в этих определениях является подчеркивание фактов изотропности и отсутствия кристаллической структуры, а также возможности распространения продольных и поперечных упругих волн.
Изготовление волокна происходит в два этапа [168]:
изготовление цилиндрической заготовки с заданным профилем показателя преломления, на пример, методом химического осаждения из газовой фазы;
вытягивание заготовки в волокно с сохранением соотношения диаметров сердцевины и обо лочки.
