
- •Предисловие
- •Введение
- •Глава 1 Основы технологии передачи цифровых сигналов
- •1.1. Особенности канала связи
- •1.1.1. Емкость канала связи
- •1.1.2. Стандартный телефонный канал
- •1.2. Импульсно-кодовая модуляция (икм)
- •1.3. Методы мультиплексирования потоков данных
- •1.3.1. Частотное мультиплексирование
- •1.3.2. Временное мультиплексирование
- •1.3.4. Волновое мультиплексирование
- •1.4. Кодирование цифровых данных в икм системах
- •1.4.1. Практические методы формирования цифровой последовательности
- •1.5. Цифровые иерархии и технология pdh
- •1.5.5.1. Характеристики промышленных систем pdh
- •Глава 2 Синхронные цифровые сети на основе технологии sdh Введение
- •2.1. Принципы построения синхронной цифровой иерархии
- •2.1.4. Обобщенная схема мультиплексирования потоков в sdh (третья редакция)
- •2.1.5. Детальный пример схемы формирования модуля stm-1
- •2.1.8.5. Указатели au-n
- •2.1.9. Структура заголовков фреймов stm-n
- •2.1.9.2. Структура заголовка soh для stm-n
- •2.1.9.3. Структура маршрутных заголовков рон
- •2.1.10.2. Транспортировка vc-n с помощью фрейма е4
- •2.2. Введение в функциональную архитектуру транспортных сетей
- •2.2.4.1. Функция физического интерфейса sdh
- •2.2.4.2. Функция окончания регенераторной секции
- •2.2.4.3. Функция окончания мультиплексной секции
- •2.2.4. Возможность мониторинга в рамках транспортной модели
- •2.3. Функциональные модули реальных сетей sdh
- •2.3.3.2. Мультиплексор ввода/вывода
- •2.3.6.3. Методы кросс-коммутации и взаимодействие сетей sdh
- •2.4. Базовые топологии реальных сетей sdh
- •2.4.1. Топология "точка-точка"
- •2.4.2. Топология "последовательная линейная цепь"
- •2.4.5. Топология "ячеистая сеть"
- •2.5. Архитектура реальных сетей sdh
- •2.6. Методы защиты синхронных потоков и оборудования sdh
- •2.6.2. Функционально-логические методы защиты синхронных потоков
- •2.6.2.2. Схема защиты с разделением ресурсов каналов типа ms spRing
- •2.6.2.4. Схема защиты соединений подсети типа sncp
- •2.6.2.5. Схема защиты ms spRing с разделением ресурсов каналов для 4-волоконного кольца
- •2.6.3. Взаимодействие элементов архитектуры сетей sdh при наличии защиты
- •2.6.3.1. Основные термины и определения при взаимодействии колец
- •2.6.3.2. Основы взаимодействия колец при использовании схем защиты
- •2.6.4. Общие итоги и возможности использования схем защиты
- •2.7. Аппаратурная реализация функциональных блоков сетей sdh
- •2.7.1. Схемная реализация и характеристики синхронных мультиплексоров
- •2.7.1.1 Реализация мультиплексоров уровня stm-1 компании Nortel
- •2.7.1.2. Реализация мультиплексоров уровня stm-4 компании Marconi
- •2.7.1.3. Реализация мультиплексоров уровня stm-4/16 компании Alcatel
- •2.7.1.4. Реализация мультиплексоров уровня stm-64 компании Nortel
- •2.7.1.5. Реализация кросс-коммутаторов типа 1641 sx компании Alcatel
- •Глава 3 Технология sonet Введение
- •3.1. Синхронная цифровая иерархия sonet
- •3.1.1. Уровни иерархии sonet
- •3.2. Схема мультиплексирования и формирование фрейма sonet
- •3.3. Функциональные элементы и структуры систем sonet
- •3.3.1. Интерфейсы, или сервисные адаптеры sonet
- •3.3.2. Стандартная конфигурация sonet
- •3.4. Функциональные модули и аппаратура сети sonet
- •3.4.1. Типы функциональных модулей
- •3.4.2. Аппаратное обеспечение сетей sonet
- •Глава 4 Радиорелейные и спутниковые системы sonet/sdh
- •4.1. Структурные схемы радиорелейных и спутниковых систем sdh
- •4.2. Особенности радиорелейных линейных систем sdh
- •4.3. Особенности спутниковых систем sdh
- •4.3.1. Схема мультиплексирования, структура мультифрейма и состав модулей sstm-XX
- •4.4. Возможности аппаратурной реализации радиорелейных и спутниковых систем sdh
- •Глава 5 Синхронизация цифровых сетей
- •5.1. Основные понятия
- •5.2. Стандарты и нормы синхронизации цифровых сетей связи
- •5.3. Общее решение задачи синхронизации
- •5.4. Характеристики хронирующих источников
- •5.5. Оборудование, используемое для синхронизации сети
- •5.5.2. Системы точного времени глонасс и gps
- •5.5.2.1. Система глонасс
- •5.5.2.2. Система gps
- •5.6. Синхронизация цифровых сетей sdh
- •5.6.1. Особенности синхронизации сетей sdh
- •5.6.1.1. Источники синхронизации сетей sdh
- •5.6.1.2. Качество хронирующего источника
- •5.6.2. Примеры построения сети синхронизации
- •5.6.2.1. Пример синхронизации кольцевой сети sdh
- •5.6.2.2. Пример синхронизации ячеистой сети sdh
- •Глава 6
- •6.1. Четырехуровневая модель управления сетью
- •6.2. Сеть управления телекоммуникациями tmn
- •6.2.2.3. Общий аспект архитектуры tmn
- •6.2.2.4. Логическая многоуровневая архитектура tmn
- •6.2.2.5. Примеры реализации dcn в сетях sdh
- •6.3. Общая схема управления сетью sdh
- •6.3.1 Подсеть sms сети управления smn
- •6.3.2. Функции Управления
- •6.3.3.2. Внутрисистемные взаимодействия
- •6.3.4. Интерфейсы взаимодействия
- •6.4.2.1. Обработка аварийных сообщений
- •6.4.2.2. Управление рабочими характеристиками
- •6.4.2.3. Управление конфигурацией
- •6.4.2.4. Управление маршрутизацией потоков данных в сети
- •6.4.2.5. Управление программой обслуживания сети и тестирования ее элементов
- •6.4.2.6. Управление безопасностью системы
- •6.5. Физический интерфейс g.703
- •6.5.1. Физические и электрические характеристики интерфейса g.703
- •6.5.1.4. Интерфейс сигнала синхронизации 2048 кГц
- •Глава 7 Основные элементы расчета сетей sdh
- •7.1. Этапы проектирования и Техническое задание на проектирование сети
- •7.2. Выбор оборудования и схемы функциональной связи узлов
- •7.3. Формирование сети управления и синхронизации
- •7.4. Заключение и некоторые дополнения
- •Глава 8 Введение в технологию atm
- •8.1. Основные сведения
- •8.1.4. Скорости передачи
- •8.1.5. Размер пакета
- •8.1.6. Стандартизация atm
- •8.1.7. Организация сети atm
- •8.1.7.2. Топологическая модель канала atm
- •8.1.7.3. Топология сетей atm
- •8.1.8. Трафик atm и адресация сообщений
- •8.1.8.1. Виртуальная адресация
- •8.1.8.2. Мультиплексирование и коммутация
- •8.1.8.3. Типы используемых соединений
- •8.2. Модель b-isdn и уровни atm
- •8.3. Взаимодействие уровней aal, atm и атм-сети
- •8.4. Ячейки atm
- •8.4.2. Особенности операций с ячейками
- •8.5. Уровень адаптации atm
- •8.5.1.1. Блок pdu для aal-1
- •8.5.5. Дополнительные классы трафика
- •8.6. Коммутация потоков atm ячеек
- •8.7. Использование сети atm в качестве магистральной
- •8.7.1.1. Соединение по требованию
- •8.7.1.2. Адресация в сетях atm
- •8.7.1.3. Процедура установления и разрыва соединения
- •8.8. Взаимодействие сети atm и лвс
- •8.8.1.2. Описание сервиса lan-эмуляции
- •8.8.1.3. Уровневая архитектура lan-эмуляции
- •8.8.1.6. Этапы и сервисные функции lan-эмуляции
- •8.8.2. Технология мроа
- •8.8.2.1. Компоненты мроа
- •8.8.2.2. Потоки информации и управления в схеме организации мроа
- •8.8.2.3. Операции, осуществляемые в системе мроа
- •8.8.2.4. Пример оптимального (короткого) соединения в системе мроа
- •8.9. Отображение atm потоков ячеек на физический уровень
- •8.9.1.2. Отображение ячеек atm на виртуальные контейнеры
- •8.9.2. Упаковка ячеек atm в оболочку полезной нагрузки sonet
- •8.9.3. Упаковка ячеек atm в фреймы pdh
- •8.9.3.1. Упаковка ячеек в фреймы е1
- •8.9.3.2. Упаковка ячеек в фреймы ез
- •8.9.3.3. Упаковка ячеек в фреймы е4
- •8.10. Управление трафиком и качество обслуживания в сетях atm
- •8.11. Заключение
- •Глава 9 Введение в оптические цифровые сети
- •9.1. Оптическое волокно как среда передачи
- •9.1.1. Основные понятия, важные при использовании оптического волокна
- •9.1.2. Свойства волокна, основанные на законах геометрической оптики
- •9.1.2.1. Полное внутреннее отражение
- •9.1.2.2. Числовая апертура
- •9.1.3. Свойства волокна, основанные на законах электромагнитного поля
- •9.1.3.1. Моды колебаний
- •9.1.3.3. Диаметр поля моды
- •9.1.3.4. Число мод многомодового волокна
- •9.1.4. Профиль изменения показателя преломления
- •9.1.5. Основные характеристики оптических потерь волокна
- •9.1.5.1. Общая функция потерь
- •9.1.6.1. Дисперсия
- •9.1.6.2. Методы компенсации дисперсии
- •9.1.7.2. Вынужденное неупругое рассеяние
- •9.1.7.3. Модуляционная неустойчивость
- •9.1.7.4. Четырехволновое смешение
- •9.1.8. Оптические солитоны
- •Глава 10 Функциональные элементы оптических сетей
- •10.1. Оптические усилители
- •10.1.1. Основные особенности оптических усилителей
- •10.1.1.1. Принцип действия оптического усилителя
- •10.1.1.2. Коэффициент усиления среды и усилителя
- •10.1.1.3. Мощность насыщения Рн
- •10.1.1.4. Источники шума и динамический диапазон
- •10.1.2. Полупроводниковые оптические усилители
- •10.1.2.3. Характеристики ппоу
- •10.1.2.4. Применение ппоу
- •10.1.3. Оптические усилители, использующие нелинейные явления в ов
- •10.1.4. Оптические усилители на ов, легированном рзэ
- •10.1.4.2. Усилители для окна 1300 нм
- •10.1.4.3. Усилители для окна 1550 нм
- •10.1.5. Практическая реализация оптических усилителей
- •10.1.5.1. Реализация усилителей edfa
- •10.1.6. Схемы и параметры промышленных оптических усилителей
- •10.1.7. Разработка сверхширокополосных оптических усилителей
- •10.2. Оптические кросс-коммутаторы
- •10.2.1. Типы базовых оптических кросс-коммутаторов
- •10.2.1.1. Механические оптические коммутаторы
- •10.2.1.2. Электрооптические коммутаторы
- •10.2.1.3. Термооптические коммутаторы
- •10.2.1.4. Оптоэлектронные коммутаторы на основе ппоу
- •10.2.1.5. Интегральные активно-волноводные коммутаторы
- •10.2.1.6. Коммутаторы на фотонных кристаллах
- •10.2.1.7. Коммутаторы на многослойных световодных жидкокристаллических матрицах
- •10.2.2.1. Логика коммутации базовых элементов размера 2x2
- •10.2.2.2. Древовидные сети типа Баньян
- •10.2.3. Особенности построения многокаскадных оптических коммутаторов
- •10.2.3.1. Схема матричного кросс-коммутатора
- •10.2.3.2. Схема ксс Бенеша
- •10.2.3.3. Схема ксс Шпанке-Бенеша
- •10.2.3.4. Схема ксс Шпанке
- •10.3. Оптические волновые конверторы
- •10.3.1. Типы волновых конверторов
- •10.3.1.1. Оптоэлектронные конверторы
- •10.3.1.2. Конверторы на основе оптической перекрестной модуляции
- •10.3.1.3. Конверторы на основе эффекта четырехволнового смешения
- •10.3.1.4. Конверторы на основе других нелинейных эффектов
- •10.4. Оптические модуляторы
- •10.4.1. Форматы линейых кодов
- •10.4.2. Методы модуляции оптической несущей
- •10.4.2.1. Непосредственная модуляция оптической несущей
- •10.4.2.2. Модуляция с использовавнием внешнего модулятора
- •10.4.3. Типы оптических модуляторов
- •10.4.3.1. Акустооптические модуляторы
- •10.4.3.2. Электрооптические модуляторы
- •10.4.3.3. Электрооптические модуляторы, использующие ппоу
- •10.5. Оптические мультиплексоры ввода-вывода
- •10.5.1. Структура оптических мультиплексоров первого поколения
- •10.5.3. Оптические технологии ввода-вывода несущих
- •10.5.3.1. Основные требования, предъявляемые к фильтрам ввода-вывода
- •10.5.3.2. Фильтры на основе оптоволоконных дифракционных решеток Брэгга
- •10.5.3.3. Фильтры на основе резонатора Фабри-Перо
- •10.5.3.4. Интерференционные фильтры на тонких пленках
- •10.5.3.5. Поляризационные фильтры на жидких кристаллах
- •10.5.3.6. Акусто-оптические перестраиваемые фильтры
- •Глава 11 Новые технологии оптических сетей связи
- •11.1. Основы технологии wdm
- •11.1.1. Введение в технологию wdm
- •11.1.2. Модель взаимодействия транспортных технологий
- •11.1.3. Блок-схема систем с wdm
- •11.1.4. Канальный (частотный) план
- •11.1.4.2. Перспективный канальный план
- •11.1.5. Классификация wdm на основе канального плана
- •11.1.6. Технологии и схемы реализации мультиплексных модулей wdm
- •11.1.6.1. Технология мультиплексирования на основе интерференционных фильтров
- •11.1.6.2. Технология мультиплексирования на основе явления угловой дисперсии
- •11.1.6.3. Современные технологии мультиплексирования
- •11.1.8. Практический пример 8-канального мультиплексора wdm
- •11.2. Основы солитонных линий связи
- •11.2.1. Экспериментальные солитонные линии связи
- •11.2.2. Использование солитонных генераторов на существующих линиях sdh
- •11.2.3. Перспективы использования солитонных линий связи
- •11.2.3.1. Перспективы повышения скорости передачи
- •11.2.3.2. Перспективы увеличения длины регенерационного участка
- •11.3. Перспективы использования полностью оптических сетей связи
- •Глава 12
- •Кабелей
- •12.1. Классификация типов промышленных оптических волокон
- •12.1.1. Классификация многомодовых волокон
- •12.1.3. Классификация волокон по профилю показателя преломления
- •12.1.4. Классификация волокон по характеристике дисперсии
- •12.1.5. Классификация специальных типов волокон
- •12.2. Характеристики промышленных оптических волокон
- •12.2.2. Основные параметры одномодовых волокон
- •12.2.4. Применение волокна для компенсации дисперсии
- •12.2.5. Оптическое волокно, сохраняющее состояние поляризации
- •12.3. Типы и характеристики промышленных оптических кабелей
- •12.3.1. Классификация типов оптических кабелей
- •- Наружной прокладки (outdoor),
- •- Специальные.
- •12.3.1.1. Кабели внутренней прокладки
- •12.3.1.2. Кабели наружной прокладки
- •12.3.1.3. Специальные кабели
- •12.3.2. Типовые конструкции оптических кабелей
- •12.3.3. Основные параметры промышленных оптических кабелей
- •12.3.4. Оптические кабели воздушной подвески
- •12.3.4.1. Типы кабелей, свзанных с грозотросом
- •- Навиваемые на грозотрос (Wraped);
- •12.4. Маркировка оптических кабелей
- •12.4.1. Маркировка промышленных оптических кабелей
- •12.4.1.2. Маркировка кабелей зао "сокк"
- •12.4.1.3. Маркировка кабелей зао нф "Электропровод"
- •12.4.1.4. Маркировка кабелей по германскому национальному стандарту din
- •12.4.1.5. Маркировка кабелей компании Fujikura
- •12.4.2. Предложения по унификации кодировки и маркировки оптических кабелей 12.4.2.1. Предложение по кодировке кабелей для баз данных
- •12.4.2.2. Предложения по маркировке промышленных кабелей
- •12.4.2.3. Унифицированная маркировка кабеля
- •1) Окнзк-ц(сп)-б(сгл)-пэ(13,5)-ом(2/3)-16(0,34/0,21)
- •2) Окнзл-ц(сп)-по(1,0)-пэ(15,0)-ом(2/3)-24(0,34/0,20)
- •3) Окнзр-ц(ст)-по(1,0)-2с(16/1,6)-пэ(15,5)-ом(2/3)-24(0,34/0,20)
- •Глава 13 Стандарты и терминология цифровых сетей
- •13.1.2. Краткий обзор стандартов sdh и pdh
- •13.1.3. Краткий обзор стандартов волоконно-оптических сетей
- •13.1.5.1. Стандарты на оптическое волокно и вок
- •13.1.5.2. Стандарты на оптические функциональные компоненты и системы
- •13.1.5.3. Стандарты на оптические транспортные сети и волс
- •13.2. Терминология цифровых сетей
- •13.2.1. Истоки появления новой терминологии
- •13.2.2. Об истоках разногласий в терминологии
- •13.2.2.1. Замечание о терминах, используемых в технологиях pdh и sdh
- •13.2.2.2. Замечание об использовании и переводе термина atm
- •13.2.3. Некоторые общие предложения по выбору терминологии
- •13.2.4. Некоторые предложения по выбору терминологии в цифровых технологиях
- •Заключение
- •Список используемых сокращений
- •Оглавление
- •Глава 1. Основы технологии передачи цифровых сигналов (технология pdh) 9
- •Глава 2. Синхронные цифровые сети на основе технологии sdh 42
- •Глава 3. Основы синхронной технологии sonet 151
- •Глава 4. Радиорелейные и спутниковые системы sonet/sdh 166
- •Глава 5. Синхронизация цифровых сетей 176
- •Глава 6. Управление сетью: функционирование, администрирование и обслуживание 191
- •Глава 8. Введение в технологию atm 240
- •Глава 9. Введение в оптические синхронные цифровые сети 283
- •Глава 10. Функциональные элементы оптических сетей 307
- •Глава 11. Новые технологии оптических сетей связи 359
- •Глава 12. Характеристики промышленных оптических волокон и кабелей 383
- •Глава 13. Стандарты и терминология цифровых сетей 412
1.3.4. Волновое мультиплексирование
Наряду с временным мультиплексированием, широко используемым в цифровых системах связи, в оптических системах связи в последнее время стал использоваться метод мультиплексирования с разделением по длине волны, часто называемый также волновым мультиплексированием. Этот метод в настоящее время получил широкое распространение в оптических системах передачи в связи с распространением технологии WDM (см. п.I l.l).
Суть метода волнового мультиплексирования заключается в объединении нескольких оптических несущих Л,/ (на передающей стороне) и передаче полученного сигнала 27 Я, по одному волокну с последующим выделением (демультиплексированием) отдельных несущих, например, путем их фильтрации с помощью фильтров Ф„ не приемной стороне.
Волновое мультиплексирование играет ту же роль, что и мультиплексирование с частотным разделением МЧР (FDM) для аналоговых систем передачи данных. По этой причине системы с WDM часто называют системами оптического мультиплексирования с частотным разделением ОМЧР (OFDM). Однако по сути своей эти технологии (FDM и OFDM) существенно отличаются друг от друга. Их отличие состоит не только в использовании оптического (OFDM) или электрического (FDM) сигнала. При FDM используется механизм AM модуляции с ОБП и выбранной системой несущих и поднесущих, модулирующий сигнал которых одинаков по структуре, так как представлен набором стандартных голосовых каналов. При OFDM механизм модуляции, необходимый в FDM для сдвига каналов, вообще не используется, а несущие генерируются отдельными источниками (лазерами), сигналы которых просто объединяются мультиплексором в единый многочастотный сигнал.
Каждая составляющая (несущая) такого многочастотного сигнала принципиально может передавать поток цифровых сигналов, сформированный по законам различных сетевых технологий. Например, одна несущая формально может передавать трафик ATM или гигабитного Ethernet, другая SDH, третья PDH и т.д. Единственное, что нужно для этого, модулировать несущие цифровым сигналом в соответствие с передаваемым трафиком и иметь интерфейс для сигналов данной сетевой технологии.
1.4. Кодирование цифровых данных в икм системах
1.4.1. Практические методы формирования цифровой последовательности
Рассмотрим простой пример дискретизации в системе ИКМ с п-каиальным мультиплексированием, внутриканальной синхронизацией (осуществляемой путем вставки синхрогруппы из к бит после т фреймов) и симметричного линейного квантования с числом уровней /. Для примера выберем п=4, к=4, т=2, 1=8. Условимся, что мгновенное значение сигнала изменяется в интервале (-4,+4). Пример иллюстрируется рис. 1-7.
Р
ис.
1-7. Практический пример мультиплексирования
в ИКМ системе
Для компактности все процессы дискретизации, квантования, кодификации, мультиплексирования и синхронизации (выравнивания) показаны на одном рисунке.
ИКМ система последовательно выполняет следующие стандартные функции:
дискретизации сигнала в каждом из четырех каналов (к1 - к4) с частотой/д (конкретное зна чение не играет роли) в последовательные нормированные моменты времени 0 (к1), 1 (к2), 2 (кЗ), 3 (к4), 4 (к1) и т. д. При отсутствии выравнивания выборки берутся периодически с пе риодом дискретизации 4 единицы, например, для к1 - в моменты: 0, 4, 8, 12, ... , для к2: 1, 5, 9, 13,... и т. д., что соответствует фрейму, состоящему из 4 тайм-слотов;
квантования выборок сигнала каждого канала, т.е. отображение непрерывного множества значений амплитуд выборок я из интервала (-4,+4) на дискретное множество из 8 уровней квантования, либо 0. 1, ..., 7 - одностороннее (несимметричное) отображение (однополярный сигнал), либо, например, -3, -2, .... +4 - двустороннее (симметричное с точностью-до уровня) отображение (двухполярный сигнал);
- двоичного кодированшшя, или кодификации (см. термин в 1.6.) квантованных значений. При
схеме кодирования: знак-номер уровня и 8 уровнях квантования достаточно 4 бита на выборку: 1 знаковый бит и 3 бита на формирование двоичного номера уровня (23 = 8). Используем простой алгоритм отображения множеств, или алгоритм кодификации: если п-1 < а < п, то а = п для всех а. Следовательно, если а = 3.55, а значит 3 <а<4, то а = 4, а если а = -0.78, а значит -/ < а < 0, то а = 0. В результате требований симметричности квантования, получаем поток бит.
^Р^^^РЖЙШН^г^!"' ° ~ °000' - '+4~010°;
- мул ,типл^1^4ф^Ц^/1.^н^пЩ по сх< ме: объединение 4 каналов на входе в один канал на вы ход - 4:1 -т.е. с чФ&едвбаниём выборе к отдельных каналов для создания потока бит выходного
САН!СГ,ПЕТ=РБУРГСКОГО ГОСУГ-л.~С~ЗГ>>НСгЪ
кан; ла.у/йЙ!п^у«ят1И4нхр1Оннэдд.и#| процесс мультиплексирования создает регулярный поток
фреймов,
состоящих из четырех выборок. Его
регулярность нарушается необходимостью
синхронизации
(выравнивания),
которая при внутриканальной синхронизации
сводится к вставке синхрогруппы после
т
фреймов
- этот процесс называется синхронизацией
{выравниванием)
фрейма.
Для
выравнивания по нашей схеме необходимо
сформировать мультифрейм
- структуру
состоящую из двух фреймов, что еще больше
осложняет процесс мультиплексирования;
-
синхронизации
фрейма (а
точнее мультифрейма)
-
эта функция осуществляется путем
формирования
и вставки легко идентифицируемой
синхрогруппы "1111" (не используемой
в процессе кодификации)
после двух регулярных фреймов, для чего
выделяется один дополнительный тайм-слот.
В результате на приемной стороне
происходит синхронизация приемника с
передатчиком,
а повторяющаяся структура - результирующий
мультифрейм -
принимает вид: 8 выборок + синхрогруппа
= 9 тайм-слотов. Можно ввести также понятие
результирующий
фрейм -
формальный
параметр, равный 9/2=4,5, показывающий, что
период повторения регулярного фрейма
изменился с 4 до 4,5 тайм-слотов.
Из этого ясно, что мультиплексирование осуществляется "регулярно в среднем", с периодом повторения 4,5 слота, формируя за цикл один результирующий фрейм. Физически же информационные выборки формируются нерегулярно. Например, выборки в к1, берутся теперь в моменты времени 0, 4, 9, 13, 18, 22, 27, и т.д.
Общий вид четырех входных сигналов, с выборками, взятыми последовательно в моменты времени 0, 1, 2, 3, и т. д., и их квантованные значения, полученные в результате кодификации, с учетом выравнивания, показаны на рис. 1-7. Сформированный таким образом поток бит, приведен в нижней части рисунка.
На приемной стороне происходит демультиплексирование указанной последовательности так, что в канал к1 попадут только квантованные кодифицированные выборки, взятые в моменты: О, 4, 9, 13, 18, 22, ... . Из них затем (если нужно) и будут восстановлены с помощью фильтрации фильтрами нижних частот (ФНЧ) исходные аналоговые сигналы.
1.4.2. Методы двоичного кодирования и ошибки квантования
Для цифровых систем, как и для аналоговых, существуют шумы канала связи и шумы, возникающие в процессе преобразования сигнала, а значит и к ним применимы такие понятия, как отношение сигнал/шум и динамический диапазон.
Специфическими для цифровых систем являются шумы квантования. На рис. 1-8, например, показана разность между идеальным и реальным преобразованным сигналами - искажение, квалифицированное как шум, возникающий при линейном квантовании. Неприятной особенностью является то, что амплитуда искажений не зависит от амплитуды сигнала, ухудшая условия передачи сигналов низкого уровня. Ясно, что для уменьшения искажений нужно увеличивать число уровней квантования, но, в отличие от звуковых Hi-Fi систем, где могут использоваться 16, 20 и 24 бита на выборку, в цифровых системах связи выше 8 бит на выборку практически не используют, чтобы не увеличивать максимально необходимую скорость передачи.
Для
улучшения ситуации используют методы
нелинейного двоичного кодирования при
квантовании {нелинейной
кодификации).
Они идейно основаны на методах компаидерного расширения динамического диапазона при передаче по каналу связи с ограниченным динамическим диапазоном, используемых в аналоговых системах (например, в системах магнитной записи). В них на входе системы сигнал сжимается с помощью компрессора до уровня, приемлемого для передачи по каналу связи, а на выходе из канала связи сигнал с помощью эспандера (осуществляющего расширение или обратное преобразование) восстанавливается (см. рис. 1-9).
Для реализации такой схемы нелинейной кодификации, достаточно выбрать требуемую степень компрессии и закон нелинейного преобразования, а затем решить проблему аппроксимации функции, соответствующей выбранному закону преобразования.
Для нелинейных (прямого и обратного) преобразований входа/выхода идеально подходит пара ехр(х) - 1п(х). Ее и апроксимируют затем по методу близкому к линейной неравномерной адаптивной аппроксимации, оптимально выбирая число и наклон прямолинейных аппроксимирующих сегментов. В результате получают некий закон, который, будучи стандартизован, используется в коммерческих системах. Используются два таких закона для симметричного входного сигнала: А-закоп (параметр А) и /л-закон (параметр д), ниже х - вход, у - выход:
А-закон (А=87.6) используется в европейских системах ИКМ и дает минимальный шаг квантования 2/4096, ц-закон используется в американских системах ИКМ (D1 с ц=100 и D2 с ц=255), давая минимальный шаг квантования 2/8159 (см. ITU-T Rec. G.711 [30]). Указанный подход позволяет добиваться отношения сигнал/шум (С/Ш) 30 дБ в динамическом диапазоне 48 дБ, что соответствует эквивалентной схеме кодирования с 13 битами на выборку.
1.4.3. Параметры стандартных ИКМ систем
Существует несколько реализаций ИКМ систем, признанных в качестве стандартных:
Т1 (AT&T, США, 1962), позднее названная Bell D1 - 24-канальная система с выходным пото ком Т1 = 1544 кбит/с;
D2 (Bell, США) - 24-канальная система, описана в ITU-T Rec. G.733 [31];
U.K. (Великобритания) - 24-канальная система с выходным потоком 1536 кбит/с;
СЕРТ (Европа) - 30-канальная система с выходным потоком Е1 = 2048 кбит/с. описана в ITU-T Rec. G.732 [32].
Параметры этих систем сведены в табл. 1-1.
Указанные в таблице параметры практически не требуют дополнительных объяснений. Укажем только их некоторые их особенности.
Системы типа Bell D1 (как модификация системы Т1) до сих пор существуют в северной Америке в силу большой распространенности в прошлом. Эти 4-х проводные системы используются и для передачи цифровых данных со скоростью 56 кбит/с по основному цифровому каналу
(ОЦК),
начало такого сервиса было положено
компанией AT&T (видимо не раньше 1973 г.,
после внедрения тарифа "267"),
предложившей услуги Dataphone
Digital
Service
[1].
Система Bell D2 в отличие от D1 более продвинута: использует 8 бит на выборку в пятерках (1-5 и 7-11) фреймов и 7 бит в 6-ом и 12-ом фреймах, редуцируя закон кодификации при переходе с 8- на 7-битное квантование (позволяет передавать данные со скоростью 64 кбит/с по ОЦК). Система использует выравнивание мультифреймов (состоящих из 12 фреймов) и допускает сигнализацию по обшему каналу. В силу широкого распространения в северной Америке, Японии и юго-восточной Азии, система была стандартизована комитетом CCITT [31].
Английская система, как и D1, использует 7-битное кодирование, но выравнивание осуществляет по мультифрейму, состоящему из 4 фреймов, что позволяет обойтись без 193-го бита (отсюда скорость 1536 кбит/с). Система использует европейский закон кодификации (с 1968 г.), что важно для целей совместимости, и позволяет передавать данные со скоростью 56 кбит/с по ОЦК. Практически вытесняется системой СЕРТ.
1.4.4. Система СЕРТ. Форматы фрейма и мультифрейма
Система СЕРТ начала развиваться с начала 70-х годов. Она целиком базировалась на двоичных, а не на двоично-десятичных эквивалентах (как три предыдущие). В результате была выбрана 8-битная схема кодификации и 32 (а не 24) канала для первичного уровня мультиплексирования.
Один из каналов (тайм-слот 0) целиком используется для синхронизации (выравнивания фреймов) и передачи системного статуса, второй (тайм-слот 16) - для организации канала сигнализации - 64 кбит/с. Число фреймов в мультифрейме также кратно 2 и зависит от типа сигнализации. При внутриканальной сигнализации используется 16 фреймов на мультифрейм, при использовании общего канала сигнализации - 2 фрейма на мультифрейм. Схема выравнивания проста и кратна 2: 8 бит на фрейм при выравнивании фрейма и 8 бит на 16 фреймов для выравнивания мультифрейма.
Система СЕРТ фактически стала доминирующей не только в Европе, но и в мире (более подробно рассмотрена в рамках технологии PDH, разд. 1.5).
1.4.5.
Практические методы линейного кодирования
потока данных в канале
Сформированная в результате мультиплексирования и выравнивания цифровая двоично-кодированная ИКМ последовательность подается в канал связи, на входе которого, как правило, используется устройство сопряжения с каналом, или интерфейсный блок, и собственно передатчик.
Учитывая, что канал, как среда передачи, может быть электрическим, оптическим или радиоканалом, полученную последовательность приходится еще, по крайней мере, дважды перекодировать для оптимизации ее прохождения через интерфейс (интерфейсное кодирование) и линию связи (линейное кодирование). Два других вида кодирования: помехоустойчивое кодирование для обнаружения и исправления ошибок, возникающих в процессе передачи, а также шифрование данных, передаваемых такой последовательностью, здесь не рассматриваются.
Поток бит, полученный в результате квантования и двоичного кодирования (кодификации), оптимален только с точки зрения уменьшения ошибок квантования, но непригоден для передачи по каналу связи по ряду причин, основные из которых следующие:
выходной цифровой поток имеет широкий спектр, что затрудняет его передачу по каналу свя зи с ограниченной полосой пропускания и осложняет процесс регенерации сигнала синхрони зации, передаваемого в канале, особенно в случае восстановления потерянного синхронизма;
спектр сигнала имеет значительную долю низкочастотных составляющих, которые могут интерферировать с составляющими передаваемого низкочастотного сигнала;
спектр содержит большую постоянную составляющую, усложняющую фильтрацию напря жения сети питания.
Для оптимизации спектра сигнала, подаваемого в линию связи, используется так называемое линейное кодирование. Оно должно обеспечить:
минимальную спектральную плотность на нулевой частоте и ее ограничение на нижних часто тах;
информацию о тактовой частоте передаваемого сигнала в виде дискретной составляющей, лег ко выделяемой на фоне непрерывной части спектра;
достаточно узкополосный непрерывный спектр для передачи сигнала через канал связи без ис кажений;
малую избыточность, для снижения относительной скорости передачи в канале связи;
минимально возможные длины блоков повторяющихся символов ("1" или "О") и диспаритет- ность (неравенство числа "1" и "О" в кодовых комбинациях).
Для двоичного кодирования число уровней входного сигнала т = 2, а число уровней выходного сигнала и может быть 2 (двухуровневое кодирование) или 3 (трехуровневое кодирование). Двухуровневое кодирование может быть однополярным (+1, 0) и двухполярным, или симметричным (+1, -1), а трехуровневое - однополярным (+2, +1, 0) и двухполярным (+1, 0, -1).
Например, оптические линии связи требуют однополярных методов кодирования, тогда как электрические линии связи могут использовать как однополярные, так и двухполярные методы кодирования.
В различных методах кодирования "1" может быть представлена положительным прямоугольным импульсом на полную или на половинную длину двоичного интервала, или переходом с "+1" на "0" или "-1" (ступенькой вниз) в центре интервала, а "0" - соответствующей длины отрицательным импульсом, или отсутствием импульса, или обратным переходом с "-1" или "0" на "+1" (ступенькой вверх) в центре интервала.
Для ограничения длины блоков повторяющихся символов типа "11...11" или "00...00" используется инверсия ("обращение" или незапланированное (преднамеренное) изменение) полярности импульсов регулярной кодовой последовательности, обозначаемая ниже буквой "V". Наряду с инверсией иногда используются вставки (дополнительные символы определенной полярности, обозначаемые ниже буквой В), позволяющие сохранить паритет кодовой комбинации.
Алгоритмы кодирования в большинстве случаев просты и могут быть описаны словесно, однако исчерпывающее описание дается направленным графом состояний, описывающим множество всех возможных состояний и переходов из одного в другое.
На рис. 1-10 приведены некоторые линейные коды и использованы такие обозначения:
а) - исходная двоичная последовательность - взята из примера, приведенного на рис. 1-7;
б) - однополярный код без возвращения к нулю - NRZ;
в) - двухполярный NRZ или симметричный телеграфный код;
г) - двухполярный код с возвращением к нулю - RZ;
д) - код с поразрядно-чередующейся инверсией - ADI;
е) - код с чередующейся инверсией на "1" - AMI;
ж) - код с инверсией кодовых комбинаций - CMI;
з) - двухполярный двухуровневый код Миллера;
и) - биполярный код высокой плотности порядка 3 - HDB3;
к) - однополярный эквивалент кода HDB3b оптической линии связи.
Ниже приведены расшифровки сокращений и краткие определения алгоритмов формирования кодов, используемых в практике цифровой связи:
1Ь2Ь - широко используемый частный случай класса блочных кодов (см. ниже mbnb), в котором 1 бит исходной ИКМ последовательности длительностью Т кодируется комбинацией из 2 бит длительностью Т/2 (относительная скорость передачи в канале связи при этом возрастает в 2 раза). К этому классу (из приведенных нами) относятся коды CMI и Миллера.
ADI - Alternate Digit Invertion code - двоичнцй код с инверсией полярности сигнала на каждом втором двоичном разряде (не важно, какой он: "1" или "0"); в результате формируется двухполярный двухуровневый код.
AMI - Alternate Mark Inversion code - двоичный код RZ с инверсией на каждой "1", может быть получен из кода ADI путем инверсии каждой четной "1"; в результате формируется двух-полярный трехуровневый код.
B3ZS - Bipolar with 3 Zero Substitution code - биполярный код с подстановкой альтернативных блоков вместо блоков из трех "О", т.е. вместо блока "000" происходит подстановка блоков "00V" или "B0V" для сохранения паритета - аналог кода HDB2 (см. ниже).
B6ZS - Bipolar with 6 Zero Substitution code - биполярный код с подстановкой альтернативных блоков вместо блоков из 6-ти "0", т.е. вместо "000000" блоков "0VB0VB".
B8ZS - Bipolar with 8 Zero Substitution code - биполярный код с подстановкой альтернативных блоков вместо блоков из 8-ми "0" , т.е. вместо "00000000" блоков "000VB0VB".
CMI - Coded Mark Inversion code - двухуровневый без возвращения к нулю двоичный код класса 1Ь2Ь с инверсией полярности кодовой комбинации на полный интервал на каждой "1" (т.е. каждой "1" ставится в соответствие либо комбинация "И", либо "00") и изменением полярности в середине каждого интервала "0" (т.е. каждому "0" ставится в соответствие дипульс"01").
HDB2 - High-Density Bipolar code of order 2 - двухполярный код высокой плотности порядка 2 -код RZ с инверсией на "1" (аналогичен AMI), в котором каждый блок "000" заменяется на блок "00V" или "B0V", где В - вставка импульса "1" выполняемая так, чтобы число В импульсов между последовательными V импульсами было нечетным. В результате формируется трехуровневый код.
HDB3 - High-Density Bipolar code of order 3 - двухполярный код высокой плотности порядка 3 -код с инверсией на "1", в котором каждый блок "0000" заменяется на блок "000V" или "B00V" , где В - вставка импульса "1" выполняемая так, чтобы число В импульсов между последовательными V импульсами было нечетным. В результате формируется трехуровневый код.
mbnb - общее обозначение класса блочных кодов - где т - длина (в битах) блоков, на которые разбивается исходная ИКМ последовательность, а л - соответствующая им длина (в битах) блоков, составленных из кодовых символов. Среди них достаточно широко используется класс 1Ь2Ь (см. выше).
NRZ - Non Return to Zero code - основополагающий двухуровневый код без возвращения к пулю, может быть как двуполярным, так и однополярным.
RZ - Return to Zero code - основополагающий трехуровневый код с возвращением к нулю.
Miller
code
-
двуполярный двухуровневый код Миллера
класса 1Ь2Ь,
имеющий
множество состояний
{00, 01, 10, 11}, переходы между которыми
описываются
графом, приведенным на рис. 1-11. Например,
для приведенной
на рис. 1-10 исходной последовательности
1101101000000
... порождаемые графом кодовые комбинации
имееют
вид: 11 10 00 01 10 00 01 11 ..., а сам процесс
генерации (перехода
из
состояния в состояние) имеет вид:
Нужно заметить, что указанные коды могут быть использованы и как интерфейсные, и как линейные коды. В электрических линиях связи интерфейсные и линейные коды могут совпадать, в оптических, как правило, нет в силу невозможности непосредственного использования биполярных кодов для оптической несущей в волоконно-оптическом кабеле (ВОК). Например, при использовании биполярного интерфейсного кода HDB3 в оптических линиях связи могут использоваться коды CMI, MCMI (модифицированный CMI) или код типа mbnb, либо использоваться его оптические аналоги, например, однополярный эквивалент кода HDB3 (см. 1-10,к). Более подробно о линейном кодировании в каналах связи см. например, в [33, глава 5].