
- •Предисловие
- •Введение
- •Глава 1 Основы технологии передачи цифровых сигналов
- •1.1. Особенности канала связи
- •1.1.1. Емкость канала связи
- •1.1.2. Стандартный телефонный канал
- •1.2. Импульсно-кодовая модуляция (икм)
- •1.3. Методы мультиплексирования потоков данных
- •1.3.1. Частотное мультиплексирование
- •1.3.2. Временное мультиплексирование
- •1.3.4. Волновое мультиплексирование
- •1.4. Кодирование цифровых данных в икм системах
- •1.4.1. Практические методы формирования цифровой последовательности
- •1.5. Цифровые иерархии и технология pdh
- •1.5.5.1. Характеристики промышленных систем pdh
- •Глава 2 Синхронные цифровые сети на основе технологии sdh Введение
- •2.1. Принципы построения синхронной цифровой иерархии
- •2.1.4. Обобщенная схема мультиплексирования потоков в sdh (третья редакция)
- •2.1.5. Детальный пример схемы формирования модуля stm-1
- •2.1.8.5. Указатели au-n
- •2.1.9. Структура заголовков фреймов stm-n
- •2.1.9.2. Структура заголовка soh для stm-n
- •2.1.9.3. Структура маршрутных заголовков рон
- •2.1.10.2. Транспортировка vc-n с помощью фрейма е4
- •2.2. Введение в функциональную архитектуру транспортных сетей
- •2.2.4.1. Функция физического интерфейса sdh
- •2.2.4.2. Функция окончания регенераторной секции
- •2.2.4.3. Функция окончания мультиплексной секции
- •2.2.4. Возможность мониторинга в рамках транспортной модели
- •2.3. Функциональные модули реальных сетей sdh
- •2.3.3.2. Мультиплексор ввода/вывода
- •2.3.6.3. Методы кросс-коммутации и взаимодействие сетей sdh
- •2.4. Базовые топологии реальных сетей sdh
- •2.4.1. Топология "точка-точка"
- •2.4.2. Топология "последовательная линейная цепь"
- •2.4.5. Топология "ячеистая сеть"
- •2.5. Архитектура реальных сетей sdh
- •2.6. Методы защиты синхронных потоков и оборудования sdh
- •2.6.2. Функционально-логические методы защиты синхронных потоков
- •2.6.2.2. Схема защиты с разделением ресурсов каналов типа ms spRing
- •2.6.2.4. Схема защиты соединений подсети типа sncp
- •2.6.2.5. Схема защиты ms spRing с разделением ресурсов каналов для 4-волоконного кольца
- •2.6.3. Взаимодействие элементов архитектуры сетей sdh при наличии защиты
- •2.6.3.1. Основные термины и определения при взаимодействии колец
- •2.6.3.2. Основы взаимодействия колец при использовании схем защиты
- •2.6.4. Общие итоги и возможности использования схем защиты
- •2.7. Аппаратурная реализация функциональных блоков сетей sdh
- •2.7.1. Схемная реализация и характеристики синхронных мультиплексоров
- •2.7.1.1 Реализация мультиплексоров уровня stm-1 компании Nortel
- •2.7.1.2. Реализация мультиплексоров уровня stm-4 компании Marconi
- •2.7.1.3. Реализация мультиплексоров уровня stm-4/16 компании Alcatel
- •2.7.1.4. Реализация мультиплексоров уровня stm-64 компании Nortel
- •2.7.1.5. Реализация кросс-коммутаторов типа 1641 sx компании Alcatel
- •Глава 3 Технология sonet Введение
- •3.1. Синхронная цифровая иерархия sonet
- •3.1.1. Уровни иерархии sonet
- •3.2. Схема мультиплексирования и формирование фрейма sonet
- •3.3. Функциональные элементы и структуры систем sonet
- •3.3.1. Интерфейсы, или сервисные адаптеры sonet
- •3.3.2. Стандартная конфигурация sonet
- •3.4. Функциональные модули и аппаратура сети sonet
- •3.4.1. Типы функциональных модулей
- •3.4.2. Аппаратное обеспечение сетей sonet
- •Глава 4 Радиорелейные и спутниковые системы sonet/sdh
- •4.1. Структурные схемы радиорелейных и спутниковых систем sdh
- •4.2. Особенности радиорелейных линейных систем sdh
- •4.3. Особенности спутниковых систем sdh
- •4.3.1. Схема мультиплексирования, структура мультифрейма и состав модулей sstm-XX
- •4.4. Возможности аппаратурной реализации радиорелейных и спутниковых систем sdh
- •Глава 5 Синхронизация цифровых сетей
- •5.1. Основные понятия
- •5.2. Стандарты и нормы синхронизации цифровых сетей связи
- •5.3. Общее решение задачи синхронизации
- •5.4. Характеристики хронирующих источников
- •5.5. Оборудование, используемое для синхронизации сети
- •5.5.2. Системы точного времени глонасс и gps
- •5.5.2.1. Система глонасс
- •5.5.2.2. Система gps
- •5.6. Синхронизация цифровых сетей sdh
- •5.6.1. Особенности синхронизации сетей sdh
- •5.6.1.1. Источники синхронизации сетей sdh
- •5.6.1.2. Качество хронирующего источника
- •5.6.2. Примеры построения сети синхронизации
- •5.6.2.1. Пример синхронизации кольцевой сети sdh
- •5.6.2.2. Пример синхронизации ячеистой сети sdh
- •Глава 6
- •6.1. Четырехуровневая модель управления сетью
- •6.2. Сеть управления телекоммуникациями tmn
- •6.2.2.3. Общий аспект архитектуры tmn
- •6.2.2.4. Логическая многоуровневая архитектура tmn
- •6.2.2.5. Примеры реализации dcn в сетях sdh
- •6.3. Общая схема управления сетью sdh
- •6.3.1 Подсеть sms сети управления smn
- •6.3.2. Функции Управления
- •6.3.3.2. Внутрисистемные взаимодействия
- •6.3.4. Интерфейсы взаимодействия
- •6.4.2.1. Обработка аварийных сообщений
- •6.4.2.2. Управление рабочими характеристиками
- •6.4.2.3. Управление конфигурацией
- •6.4.2.4. Управление маршрутизацией потоков данных в сети
- •6.4.2.5. Управление программой обслуживания сети и тестирования ее элементов
- •6.4.2.6. Управление безопасностью системы
- •6.5. Физический интерфейс g.703
- •6.5.1. Физические и электрические характеристики интерфейса g.703
- •6.5.1.4. Интерфейс сигнала синхронизации 2048 кГц
- •Глава 7 Основные элементы расчета сетей sdh
- •7.1. Этапы проектирования и Техническое задание на проектирование сети
- •7.2. Выбор оборудования и схемы функциональной связи узлов
- •7.3. Формирование сети управления и синхронизации
- •7.4. Заключение и некоторые дополнения
- •Глава 8 Введение в технологию atm
- •8.1. Основные сведения
- •8.1.4. Скорости передачи
- •8.1.5. Размер пакета
- •8.1.6. Стандартизация atm
- •8.1.7. Организация сети atm
- •8.1.7.2. Топологическая модель канала atm
- •8.1.7.3. Топология сетей atm
- •8.1.8. Трафик atm и адресация сообщений
- •8.1.8.1. Виртуальная адресация
- •8.1.8.2. Мультиплексирование и коммутация
- •8.1.8.3. Типы используемых соединений
- •8.2. Модель b-isdn и уровни atm
- •8.3. Взаимодействие уровней aal, atm и атм-сети
- •8.4. Ячейки atm
- •8.4.2. Особенности операций с ячейками
- •8.5. Уровень адаптации atm
- •8.5.1.1. Блок pdu для aal-1
- •8.5.5. Дополнительные классы трафика
- •8.6. Коммутация потоков atm ячеек
- •8.7. Использование сети atm в качестве магистральной
- •8.7.1.1. Соединение по требованию
- •8.7.1.2. Адресация в сетях atm
- •8.7.1.3. Процедура установления и разрыва соединения
- •8.8. Взаимодействие сети atm и лвс
- •8.8.1.2. Описание сервиса lan-эмуляции
- •8.8.1.3. Уровневая архитектура lan-эмуляции
- •8.8.1.6. Этапы и сервисные функции lan-эмуляции
- •8.8.2. Технология мроа
- •8.8.2.1. Компоненты мроа
- •8.8.2.2. Потоки информации и управления в схеме организации мроа
- •8.8.2.3. Операции, осуществляемые в системе мроа
- •8.8.2.4. Пример оптимального (короткого) соединения в системе мроа
- •8.9. Отображение atm потоков ячеек на физический уровень
- •8.9.1.2. Отображение ячеек atm на виртуальные контейнеры
- •8.9.2. Упаковка ячеек atm в оболочку полезной нагрузки sonet
- •8.9.3. Упаковка ячеек atm в фреймы pdh
- •8.9.3.1. Упаковка ячеек в фреймы е1
- •8.9.3.2. Упаковка ячеек в фреймы ез
- •8.9.3.3. Упаковка ячеек в фреймы е4
- •8.10. Управление трафиком и качество обслуживания в сетях atm
- •8.11. Заключение
- •Глава 9 Введение в оптические цифровые сети
- •9.1. Оптическое волокно как среда передачи
- •9.1.1. Основные понятия, важные при использовании оптического волокна
- •9.1.2. Свойства волокна, основанные на законах геометрической оптики
- •9.1.2.1. Полное внутреннее отражение
- •9.1.2.2. Числовая апертура
- •9.1.3. Свойства волокна, основанные на законах электромагнитного поля
- •9.1.3.1. Моды колебаний
- •9.1.3.3. Диаметр поля моды
- •9.1.3.4. Число мод многомодового волокна
- •9.1.4. Профиль изменения показателя преломления
- •9.1.5. Основные характеристики оптических потерь волокна
- •9.1.5.1. Общая функция потерь
- •9.1.6.1. Дисперсия
- •9.1.6.2. Методы компенсации дисперсии
- •9.1.7.2. Вынужденное неупругое рассеяние
- •9.1.7.3. Модуляционная неустойчивость
- •9.1.7.4. Четырехволновое смешение
- •9.1.8. Оптические солитоны
- •Глава 10 Функциональные элементы оптических сетей
- •10.1. Оптические усилители
- •10.1.1. Основные особенности оптических усилителей
- •10.1.1.1. Принцип действия оптического усилителя
- •10.1.1.2. Коэффициент усиления среды и усилителя
- •10.1.1.3. Мощность насыщения Рн
- •10.1.1.4. Источники шума и динамический диапазон
- •10.1.2. Полупроводниковые оптические усилители
- •10.1.2.3. Характеристики ппоу
- •10.1.2.4. Применение ппоу
- •10.1.3. Оптические усилители, использующие нелинейные явления в ов
- •10.1.4. Оптические усилители на ов, легированном рзэ
- •10.1.4.2. Усилители для окна 1300 нм
- •10.1.4.3. Усилители для окна 1550 нм
- •10.1.5. Практическая реализация оптических усилителей
- •10.1.5.1. Реализация усилителей edfa
- •10.1.6. Схемы и параметры промышленных оптических усилителей
- •10.1.7. Разработка сверхширокополосных оптических усилителей
- •10.2. Оптические кросс-коммутаторы
- •10.2.1. Типы базовых оптических кросс-коммутаторов
- •10.2.1.1. Механические оптические коммутаторы
- •10.2.1.2. Электрооптические коммутаторы
- •10.2.1.3. Термооптические коммутаторы
- •10.2.1.4. Оптоэлектронные коммутаторы на основе ппоу
- •10.2.1.5. Интегральные активно-волноводные коммутаторы
- •10.2.1.6. Коммутаторы на фотонных кристаллах
- •10.2.1.7. Коммутаторы на многослойных световодных жидкокристаллических матрицах
- •10.2.2.1. Логика коммутации базовых элементов размера 2x2
- •10.2.2.2. Древовидные сети типа Баньян
- •10.2.3. Особенности построения многокаскадных оптических коммутаторов
- •10.2.3.1. Схема матричного кросс-коммутатора
- •10.2.3.2. Схема ксс Бенеша
- •10.2.3.3. Схема ксс Шпанке-Бенеша
- •10.2.3.4. Схема ксс Шпанке
- •10.3. Оптические волновые конверторы
- •10.3.1. Типы волновых конверторов
- •10.3.1.1. Оптоэлектронные конверторы
- •10.3.1.2. Конверторы на основе оптической перекрестной модуляции
- •10.3.1.3. Конверторы на основе эффекта четырехволнового смешения
- •10.3.1.4. Конверторы на основе других нелинейных эффектов
- •10.4. Оптические модуляторы
- •10.4.1. Форматы линейых кодов
- •10.4.2. Методы модуляции оптической несущей
- •10.4.2.1. Непосредственная модуляция оптической несущей
- •10.4.2.2. Модуляция с использовавнием внешнего модулятора
- •10.4.3. Типы оптических модуляторов
- •10.4.3.1. Акустооптические модуляторы
- •10.4.3.2. Электрооптические модуляторы
- •10.4.3.3. Электрооптические модуляторы, использующие ппоу
- •10.5. Оптические мультиплексоры ввода-вывода
- •10.5.1. Структура оптических мультиплексоров первого поколения
- •10.5.3. Оптические технологии ввода-вывода несущих
- •10.5.3.1. Основные требования, предъявляемые к фильтрам ввода-вывода
- •10.5.3.2. Фильтры на основе оптоволоконных дифракционных решеток Брэгга
- •10.5.3.3. Фильтры на основе резонатора Фабри-Перо
- •10.5.3.4. Интерференционные фильтры на тонких пленках
- •10.5.3.5. Поляризационные фильтры на жидких кристаллах
- •10.5.3.6. Акусто-оптические перестраиваемые фильтры
- •Глава 11 Новые технологии оптических сетей связи
- •11.1. Основы технологии wdm
- •11.1.1. Введение в технологию wdm
- •11.1.2. Модель взаимодействия транспортных технологий
- •11.1.3. Блок-схема систем с wdm
- •11.1.4. Канальный (частотный) план
- •11.1.4.2. Перспективный канальный план
- •11.1.5. Классификация wdm на основе канального плана
- •11.1.6. Технологии и схемы реализации мультиплексных модулей wdm
- •11.1.6.1. Технология мультиплексирования на основе интерференционных фильтров
- •11.1.6.2. Технология мультиплексирования на основе явления угловой дисперсии
- •11.1.6.3. Современные технологии мультиплексирования
- •11.1.8. Практический пример 8-канального мультиплексора wdm
- •11.2. Основы солитонных линий связи
- •11.2.1. Экспериментальные солитонные линии связи
- •11.2.2. Использование солитонных генераторов на существующих линиях sdh
- •11.2.3. Перспективы использования солитонных линий связи
- •11.2.3.1. Перспективы повышения скорости передачи
- •11.2.3.2. Перспективы увеличения длины регенерационного участка
- •11.3. Перспективы использования полностью оптических сетей связи
- •Глава 12
- •Кабелей
- •12.1. Классификация типов промышленных оптических волокон
- •12.1.1. Классификация многомодовых волокон
- •12.1.3. Классификация волокон по профилю показателя преломления
- •12.1.4. Классификация волокон по характеристике дисперсии
- •12.1.5. Классификация специальных типов волокон
- •12.2. Характеристики промышленных оптических волокон
- •12.2.2. Основные параметры одномодовых волокон
- •12.2.4. Применение волокна для компенсации дисперсии
- •12.2.5. Оптическое волокно, сохраняющее состояние поляризации
- •12.3. Типы и характеристики промышленных оптических кабелей
- •12.3.1. Классификация типов оптических кабелей
- •- Наружной прокладки (outdoor),
- •- Специальные.
- •12.3.1.1. Кабели внутренней прокладки
- •12.3.1.2. Кабели наружной прокладки
- •12.3.1.3. Специальные кабели
- •12.3.2. Типовые конструкции оптических кабелей
- •12.3.3. Основные параметры промышленных оптических кабелей
- •12.3.4. Оптические кабели воздушной подвески
- •12.3.4.1. Типы кабелей, свзанных с грозотросом
- •- Навиваемые на грозотрос (Wraped);
- •12.4. Маркировка оптических кабелей
- •12.4.1. Маркировка промышленных оптических кабелей
- •12.4.1.2. Маркировка кабелей зао "сокк"
- •12.4.1.3. Маркировка кабелей зао нф "Электропровод"
- •12.4.1.4. Маркировка кабелей по германскому национальному стандарту din
- •12.4.1.5. Маркировка кабелей компании Fujikura
- •12.4.2. Предложения по унификации кодировки и маркировки оптических кабелей 12.4.2.1. Предложение по кодировке кабелей для баз данных
- •12.4.2.2. Предложения по маркировке промышленных кабелей
- •12.4.2.3. Унифицированная маркировка кабеля
- •1) Окнзк-ц(сп)-б(сгл)-пэ(13,5)-ом(2/3)-16(0,34/0,21)
- •2) Окнзл-ц(сп)-по(1,0)-пэ(15,0)-ом(2/3)-24(0,34/0,20)
- •3) Окнзр-ц(ст)-по(1,0)-2с(16/1,6)-пэ(15,5)-ом(2/3)-24(0,34/0,20)
- •Глава 13 Стандарты и терминология цифровых сетей
- •13.1.2. Краткий обзор стандартов sdh и pdh
- •13.1.3. Краткий обзор стандартов волоконно-оптических сетей
- •13.1.5.1. Стандарты на оптическое волокно и вок
- •13.1.5.2. Стандарты на оптические функциональные компоненты и системы
- •13.1.5.3. Стандарты на оптические транспортные сети и волс
- •13.2. Терминология цифровых сетей
- •13.2.1. Истоки появления новой терминологии
- •13.2.2. Об истоках разногласий в терминологии
- •13.2.2.1. Замечание о терминах, используемых в технологиях pdh и sdh
- •13.2.2.2. Замечание об использовании и переводе термина atm
- •13.2.3. Некоторые общие предложения по выбору терминологии
- •13.2.4. Некоторые предложения по выбору терминологии в цифровых технологиях
- •Заключение
- •Список используемых сокращений
- •Оглавление
- •Глава 1. Основы технологии передачи цифровых сигналов (технология pdh) 9
- •Глава 2. Синхронные цифровые сети на основе технологии sdh 42
- •Глава 3. Основы синхронной технологии sonet 151
- •Глава 4. Радиорелейные и спутниковые системы sonet/sdh 166
- •Глава 5. Синхронизация цифровых сетей 176
- •Глава 6. Управление сетью: функционирование, администрирование и обслуживание 191
- •Глава 8. Введение в технологию atm 240
- •Глава 9. Введение в оптические синхронные цифровые сети 283
- •Глава 10. Функциональные элементы оптических сетей 307
- •Глава 11. Новые технологии оптических сетей связи 359
- •Глава 12. Характеристики промышленных оптических волокон и кабелей 383
- •Глава 13. Стандарты и терминология цифровых сетей 412
2.7.1.3. Реализация мультиплексоров уровня stm-4/16 компании Alcatel
Рассмотрим еще один пример мультиплексора уровня STM-4, позволяющего легко производить его модификацию до уровня STM-16. Это мультиплексоры 1651 SM и 1651 SMC и мультиплексор нового поколения Optitex 1660 SM компании Alcatel. Структурная-схема мультиплексора 1651 SM приведена на рис. 2-72 [57].
Мультиплексор 1651 SM может быть использован для работы в качестве:
-линейного терминального мультиплексора (одинарного или двойного) с двумя агрегатными блоками;
линейного регенератора, работающего по схемам с защитой 1+1 или без нее;
мультиплексора ввода/вывода с двумя или четырьмя агрегатными блоками для работы в сетях с топологией 2- и 4-волоконного кольца и в линейной цепи с защитой типа 1 + 1 или без защиты;
концентратора (хаба) для осуществления функций центрального узла в топологии "звезда" (см. рис. 2-51);
коммутатора, функционирующего в рамках мультиплексора и самостоятельно емкостью до 16 STM-1 портов.
Мультиплексор и его блоки имеют следующие характеристики:
• трибные интерфейсы:
скорость передачи данных на входе - 2, 34, 45 и 140 или 155 Мбит/с (электрические) или 155 Мбит/с (оптический);
входной импеданс - 75 Ом (коаксиальный) - для всех трибов, 120 Ом (симметричный) - для 2 Мбит/с.
• оптические агрегатные блоки:
- 622 Мбит/с (STM-4) и 2488 Мбит/с (STM-16 - 1651 SMC);
• оптические интерфейсы: -AjmS'TM-1:S-1.1,L-1.1,L-1.2;
-для STM-4: S-4.1, L-4.1, L-4.2, L-4.1 JE, L-4.2 JE;
для STM-16: S-16.1, L-16.1, L-16.2, L-16.2 JE;
оптические соединители - FC, PC;
соответствие стандартам - ITU-T Rec. G.707 [16], Rec. G.957 [24], Rec. G.958 [25].
• особенности режимов ввода/вывода и возможности кросс-коммутации: максимальное число трибов. коммутируемых без блокировки:
8 - для трибов 140 Мбит/с и 155 Мбит/с;
24 - для трибов 34 Мбит/с или 45 Мбит/с;
63 - для трибов 2 Мбит/с.
дополнительное число коммутируемых 2 Мбит/с трибных портов ввода/вывода:
189 на каждую полку (кассету) типа 1641SM-D, установленную на стойке. типы кросс-коммутации:
на уровне виртуальных контейнеров VC-4:
линия-линия (агрегатный блок-агрегатный блок) - сквозная кросс-коммутация;
линия-триб - внутренняя кросс-коммутация;
триб-триб - локальная кросс-коммутация.
- на уровне виртуальных контейнеров VC-3 и VC-12:
8 VC-4 эквивалентов в режиме обхода узла - байпасная кросс-коммутация;
8 VC-4 эквивалентов в режимах сквозной, внутренней и локальной кросс-коммутации.
• особенности режимов защиты: защита сети:
- типа 1 + 1, 1:1 для мультиплексных секций любого вида линейной сети (на уровне агрегатных блоков и SDH трибов) с использованием технологий защиты однонаправленного (MS-USHR) или двунаправленного (MS-BSHR и MS Spring) 2- и 4-волоконного кольца в том числе и с ис пользованием функции "вывод с продолжением" для защиты взаимодействующих колец со сдвоенными узлами;
защита маршрута типа SNCP (SNC-PP). защита оборудования:
типа 1 + 1 - для любого общего блока (коммутатора, контроллера, связи, блоков питания и др.);
типа 1+N, где N = 3, для трибов 2 Мбит/с;
типа 1+1, 1+N для других типов трибов.
• особенности системы управления: интерфейсы систем управления:
Qx, Qb3, Qecc - Q-интерфейсы для доступа по сети Ethernet типа 10BASE2 на уровне менеджера сети NM в соответствии с стандартами ITU-T Rec. G.773 [89], Rec. G.784 [23];
RS-232 (разъем DB-9) - для модемного доступа (9600 бит/с) к NM через крафт-термииал СТ;
Е1/Е2 - для доступа по служебным цифровым каналам EOW (DTMF с внутриполосной сигна лизацией);
G.703 (сонаправленный интерфейс) - для служебных (DS0) каналов данных 3x64 или 6x64 кбит/с;
G.703 (G.704, G.736) - для организации служебных (Е1) каналов данных 4x2 Мбит/с;
V.11 (интерфейс) - для организации служебных каналов передачи данных (3x9600 бит/с). управление передачей данных:
SOH (байты D1-D3 и D-4-D-12) - для управления регенераторами на уровне NM;
8 входов/7 выходов - для осуществления операций тестирования и сбора данных; оперативное управление:
дистанционный сбор учетных (инвентарных) данных на уровне интерфейсных карт;
загрузка программного обеспечения без прерывания трафика;
- контроль ошибок и параметров настройки в соответствии со стандартами ITU-T G.784 [23], G.826 [75].
• синхронизация:
внутренняя: +/- 4,6* 10"6 с дрейфом не хуже 0,37* 10"6 в день;
внешняя:
2048 кГц в соответствии с G.703, импеданс: 120 Ом (симметричный) и 75 Ом (коаксиальный кабель);
линейный сигнал STM-N или трибы 2 Мбит/с;
- выходы:
- 2048 кГц в соответствии с G.703, импеданс: 120 Ом (симметричный) и 75 Ом (коаксиальный кабель).
Выбор типа синхронизации осуществляется в соответствии с установленными приоритетами или по алгоритму, использующему сообщения о статусе синхронизации SSM. Другой особенностью является наличие специального входа системы синхронизации, на который подается радиосигнал с глобальной системы определения местоположения GPS, позволяющий подстраивать источник синхронизации по мировому координированному времени UCT (см. раздел 5.5.2).
Особенностью мультиплексора Optinex 1660 SM является дальнейшее улучшение характеристик SMA-4. Он позволяет коммутировать до 882 трибных портов 2 Мбит/с на одной стойке (2 основных полки и 2 полки расширения) или работать автономным кросс-коммутатором с эквивалентной производительностью 64x64 STM-1.
Кроме этого он может быть использован как ATM или IP коммутатор с базовой скоростью 2,5 Гбит/с, может работать на одном волокне в дуплексном режиме, допускает мониторинг параметров системы при использовании схем защиты SNCP/I и SNCP/N и, наконец, рассчитан на взаимодействие с системами WDM.
Схема размещения интерфейсных карт и модулей в корпусе полки, устанавливаемой на стойке S9 (Alcatel), соответствующей стандартной стопке ETS300119, приведена на рис. 2-73. Таких полок в стойке может быть две. Блоки используют печатную плату европейского стандарта (233x220 мм).
Верхняя часть полки используется для панели межсоединений {интерфейсы кабельной связи). Средняя часть полки {верхняя кассета) имеет 16 слотов (разъемов): 3 (SW1-4, SW1-10, SW6-9) - для коммутации интерфейсных карт, 10 - для трибных интерфейсных карт, два матричных коммутатора (стопроцентное резервирование), один блок питания. Нижняя часть полки {нижняя кассета) имеет 10 слотов: 4 (WA, ЕВ, ЕА, WB) линейных агрегатных блока и два таймера (для всех стопроцентное резервирование), два блока питания (резервирование 50% с учетом блока на верхней кассете), один контроллер и один блок для внешних подключений (AUX).