
- •Предисловие
- •Введение
- •Глава 1 Основы технологии передачи цифровых сигналов
- •1.1. Особенности канала связи
- •1.1.1. Емкость канала связи
- •1.1.2. Стандартный телефонный канал
- •1.2. Импульсно-кодовая модуляция (икм)
- •1.3. Методы мультиплексирования потоков данных
- •1.3.1. Частотное мультиплексирование
- •1.3.2. Временное мультиплексирование
- •1.3.4. Волновое мультиплексирование
- •1.4. Кодирование цифровых данных в икм системах
- •1.4.1. Практические методы формирования цифровой последовательности
- •1.5. Цифровые иерархии и технология pdh
- •1.5.5.1. Характеристики промышленных систем pdh
- •Глава 2 Синхронные цифровые сети на основе технологии sdh Введение
- •2.1. Принципы построения синхронной цифровой иерархии
- •2.1.4. Обобщенная схема мультиплексирования потоков в sdh (третья редакция)
- •2.1.5. Детальный пример схемы формирования модуля stm-1
- •2.1.8.5. Указатели au-n
- •2.1.9. Структура заголовков фреймов stm-n
- •2.1.9.2. Структура заголовка soh для stm-n
- •2.1.9.3. Структура маршрутных заголовков рон
- •2.1.10.2. Транспортировка vc-n с помощью фрейма е4
- •2.2. Введение в функциональную архитектуру транспортных сетей
- •2.2.4.1. Функция физического интерфейса sdh
- •2.2.4.2. Функция окончания регенераторной секции
- •2.2.4.3. Функция окончания мультиплексной секции
- •2.2.4. Возможность мониторинга в рамках транспортной модели
- •2.3. Функциональные модули реальных сетей sdh
- •2.3.3.2. Мультиплексор ввода/вывода
- •2.3.6.3. Методы кросс-коммутации и взаимодействие сетей sdh
- •2.4. Базовые топологии реальных сетей sdh
- •2.4.1. Топология "точка-точка"
- •2.4.2. Топология "последовательная линейная цепь"
- •2.4.5. Топология "ячеистая сеть"
- •2.5. Архитектура реальных сетей sdh
- •2.6. Методы защиты синхронных потоков и оборудования sdh
- •2.6.2. Функционально-логические методы защиты синхронных потоков
- •2.6.2.2. Схема защиты с разделением ресурсов каналов типа ms spRing
- •2.6.2.4. Схема защиты соединений подсети типа sncp
- •2.6.2.5. Схема защиты ms spRing с разделением ресурсов каналов для 4-волоконного кольца
- •2.6.3. Взаимодействие элементов архитектуры сетей sdh при наличии защиты
- •2.6.3.1. Основные термины и определения при взаимодействии колец
- •2.6.3.2. Основы взаимодействия колец при использовании схем защиты
- •2.6.4. Общие итоги и возможности использования схем защиты
- •2.7. Аппаратурная реализация функциональных блоков сетей sdh
- •2.7.1. Схемная реализация и характеристики синхронных мультиплексоров
- •2.7.1.1 Реализация мультиплексоров уровня stm-1 компании Nortel
- •2.7.1.2. Реализация мультиплексоров уровня stm-4 компании Marconi
- •2.7.1.3. Реализация мультиплексоров уровня stm-4/16 компании Alcatel
- •2.7.1.4. Реализация мультиплексоров уровня stm-64 компании Nortel
- •2.7.1.5. Реализация кросс-коммутаторов типа 1641 sx компании Alcatel
- •Глава 3 Технология sonet Введение
- •3.1. Синхронная цифровая иерархия sonet
- •3.1.1. Уровни иерархии sonet
- •3.2. Схема мультиплексирования и формирование фрейма sonet
- •3.3. Функциональные элементы и структуры систем sonet
- •3.3.1. Интерфейсы, или сервисные адаптеры sonet
- •3.3.2. Стандартная конфигурация sonet
- •3.4. Функциональные модули и аппаратура сети sonet
- •3.4.1. Типы функциональных модулей
- •3.4.2. Аппаратное обеспечение сетей sonet
- •Глава 4 Радиорелейные и спутниковые системы sonet/sdh
- •4.1. Структурные схемы радиорелейных и спутниковых систем sdh
- •4.2. Особенности радиорелейных линейных систем sdh
- •4.3. Особенности спутниковых систем sdh
- •4.3.1. Схема мультиплексирования, структура мультифрейма и состав модулей sstm-XX
- •4.4. Возможности аппаратурной реализации радиорелейных и спутниковых систем sdh
- •Глава 5 Синхронизация цифровых сетей
- •5.1. Основные понятия
- •5.2. Стандарты и нормы синхронизации цифровых сетей связи
- •5.3. Общее решение задачи синхронизации
- •5.4. Характеристики хронирующих источников
- •5.5. Оборудование, используемое для синхронизации сети
- •5.5.2. Системы точного времени глонасс и gps
- •5.5.2.1. Система глонасс
- •5.5.2.2. Система gps
- •5.6. Синхронизация цифровых сетей sdh
- •5.6.1. Особенности синхронизации сетей sdh
- •5.6.1.1. Источники синхронизации сетей sdh
- •5.6.1.2. Качество хронирующего источника
- •5.6.2. Примеры построения сети синхронизации
- •5.6.2.1. Пример синхронизации кольцевой сети sdh
- •5.6.2.2. Пример синхронизации ячеистой сети sdh
- •Глава 6
- •6.1. Четырехуровневая модель управления сетью
- •6.2. Сеть управления телекоммуникациями tmn
- •6.2.2.3. Общий аспект архитектуры tmn
- •6.2.2.4. Логическая многоуровневая архитектура tmn
- •6.2.2.5. Примеры реализации dcn в сетях sdh
- •6.3. Общая схема управления сетью sdh
- •6.3.1 Подсеть sms сети управления smn
- •6.3.2. Функции Управления
- •6.3.3.2. Внутрисистемные взаимодействия
- •6.3.4. Интерфейсы взаимодействия
- •6.4.2.1. Обработка аварийных сообщений
- •6.4.2.2. Управление рабочими характеристиками
- •6.4.2.3. Управление конфигурацией
- •6.4.2.4. Управление маршрутизацией потоков данных в сети
- •6.4.2.5. Управление программой обслуживания сети и тестирования ее элементов
- •6.4.2.6. Управление безопасностью системы
- •6.5. Физический интерфейс g.703
- •6.5.1. Физические и электрические характеристики интерфейса g.703
- •6.5.1.4. Интерфейс сигнала синхронизации 2048 кГц
- •Глава 7 Основные элементы расчета сетей sdh
- •7.1. Этапы проектирования и Техническое задание на проектирование сети
- •7.2. Выбор оборудования и схемы функциональной связи узлов
- •7.3. Формирование сети управления и синхронизации
- •7.4. Заключение и некоторые дополнения
- •Глава 8 Введение в технологию atm
- •8.1. Основные сведения
- •8.1.4. Скорости передачи
- •8.1.5. Размер пакета
- •8.1.6. Стандартизация atm
- •8.1.7. Организация сети atm
- •8.1.7.2. Топологическая модель канала atm
- •8.1.7.3. Топология сетей atm
- •8.1.8. Трафик atm и адресация сообщений
- •8.1.8.1. Виртуальная адресация
- •8.1.8.2. Мультиплексирование и коммутация
- •8.1.8.3. Типы используемых соединений
- •8.2. Модель b-isdn и уровни atm
- •8.3. Взаимодействие уровней aal, atm и атм-сети
- •8.4. Ячейки atm
- •8.4.2. Особенности операций с ячейками
- •8.5. Уровень адаптации atm
- •8.5.1.1. Блок pdu для aal-1
- •8.5.5. Дополнительные классы трафика
- •8.6. Коммутация потоков atm ячеек
- •8.7. Использование сети atm в качестве магистральной
- •8.7.1.1. Соединение по требованию
- •8.7.1.2. Адресация в сетях atm
- •8.7.1.3. Процедура установления и разрыва соединения
- •8.8. Взаимодействие сети atm и лвс
- •8.8.1.2. Описание сервиса lan-эмуляции
- •8.8.1.3. Уровневая архитектура lan-эмуляции
- •8.8.1.6. Этапы и сервисные функции lan-эмуляции
- •8.8.2. Технология мроа
- •8.8.2.1. Компоненты мроа
- •8.8.2.2. Потоки информации и управления в схеме организации мроа
- •8.8.2.3. Операции, осуществляемые в системе мроа
- •8.8.2.4. Пример оптимального (короткого) соединения в системе мроа
- •8.9. Отображение atm потоков ячеек на физический уровень
- •8.9.1.2. Отображение ячеек atm на виртуальные контейнеры
- •8.9.2. Упаковка ячеек atm в оболочку полезной нагрузки sonet
- •8.9.3. Упаковка ячеек atm в фреймы pdh
- •8.9.3.1. Упаковка ячеек в фреймы е1
- •8.9.3.2. Упаковка ячеек в фреймы ез
- •8.9.3.3. Упаковка ячеек в фреймы е4
- •8.10. Управление трафиком и качество обслуживания в сетях atm
- •8.11. Заключение
- •Глава 9 Введение в оптические цифровые сети
- •9.1. Оптическое волокно как среда передачи
- •9.1.1. Основные понятия, важные при использовании оптического волокна
- •9.1.2. Свойства волокна, основанные на законах геометрической оптики
- •9.1.2.1. Полное внутреннее отражение
- •9.1.2.2. Числовая апертура
- •9.1.3. Свойства волокна, основанные на законах электромагнитного поля
- •9.1.3.1. Моды колебаний
- •9.1.3.3. Диаметр поля моды
- •9.1.3.4. Число мод многомодового волокна
- •9.1.4. Профиль изменения показателя преломления
- •9.1.5. Основные характеристики оптических потерь волокна
- •9.1.5.1. Общая функция потерь
- •9.1.6.1. Дисперсия
- •9.1.6.2. Методы компенсации дисперсии
- •9.1.7.2. Вынужденное неупругое рассеяние
- •9.1.7.3. Модуляционная неустойчивость
- •9.1.7.4. Четырехволновое смешение
- •9.1.8. Оптические солитоны
- •Глава 10 Функциональные элементы оптических сетей
- •10.1. Оптические усилители
- •10.1.1. Основные особенности оптических усилителей
- •10.1.1.1. Принцип действия оптического усилителя
- •10.1.1.2. Коэффициент усиления среды и усилителя
- •10.1.1.3. Мощность насыщения Рн
- •10.1.1.4. Источники шума и динамический диапазон
- •10.1.2. Полупроводниковые оптические усилители
- •10.1.2.3. Характеристики ппоу
- •10.1.2.4. Применение ппоу
- •10.1.3. Оптические усилители, использующие нелинейные явления в ов
- •10.1.4. Оптические усилители на ов, легированном рзэ
- •10.1.4.2. Усилители для окна 1300 нм
- •10.1.4.3. Усилители для окна 1550 нм
- •10.1.5. Практическая реализация оптических усилителей
- •10.1.5.1. Реализация усилителей edfa
- •10.1.6. Схемы и параметры промышленных оптических усилителей
- •10.1.7. Разработка сверхширокополосных оптических усилителей
- •10.2. Оптические кросс-коммутаторы
- •10.2.1. Типы базовых оптических кросс-коммутаторов
- •10.2.1.1. Механические оптические коммутаторы
- •10.2.1.2. Электрооптические коммутаторы
- •10.2.1.3. Термооптические коммутаторы
- •10.2.1.4. Оптоэлектронные коммутаторы на основе ппоу
- •10.2.1.5. Интегральные активно-волноводные коммутаторы
- •10.2.1.6. Коммутаторы на фотонных кристаллах
- •10.2.1.7. Коммутаторы на многослойных световодных жидкокристаллических матрицах
- •10.2.2.1. Логика коммутации базовых элементов размера 2x2
- •10.2.2.2. Древовидные сети типа Баньян
- •10.2.3. Особенности построения многокаскадных оптических коммутаторов
- •10.2.3.1. Схема матричного кросс-коммутатора
- •10.2.3.2. Схема ксс Бенеша
- •10.2.3.3. Схема ксс Шпанке-Бенеша
- •10.2.3.4. Схема ксс Шпанке
- •10.3. Оптические волновые конверторы
- •10.3.1. Типы волновых конверторов
- •10.3.1.1. Оптоэлектронные конверторы
- •10.3.1.2. Конверторы на основе оптической перекрестной модуляции
- •10.3.1.3. Конверторы на основе эффекта четырехволнового смешения
- •10.3.1.4. Конверторы на основе других нелинейных эффектов
- •10.4. Оптические модуляторы
- •10.4.1. Форматы линейых кодов
- •10.4.2. Методы модуляции оптической несущей
- •10.4.2.1. Непосредственная модуляция оптической несущей
- •10.4.2.2. Модуляция с использовавнием внешнего модулятора
- •10.4.3. Типы оптических модуляторов
- •10.4.3.1. Акустооптические модуляторы
- •10.4.3.2. Электрооптические модуляторы
- •10.4.3.3. Электрооптические модуляторы, использующие ппоу
- •10.5. Оптические мультиплексоры ввода-вывода
- •10.5.1. Структура оптических мультиплексоров первого поколения
- •10.5.3. Оптические технологии ввода-вывода несущих
- •10.5.3.1. Основные требования, предъявляемые к фильтрам ввода-вывода
- •10.5.3.2. Фильтры на основе оптоволоконных дифракционных решеток Брэгга
- •10.5.3.3. Фильтры на основе резонатора Фабри-Перо
- •10.5.3.4. Интерференционные фильтры на тонких пленках
- •10.5.3.5. Поляризационные фильтры на жидких кристаллах
- •10.5.3.6. Акусто-оптические перестраиваемые фильтры
- •Глава 11 Новые технологии оптических сетей связи
- •11.1. Основы технологии wdm
- •11.1.1. Введение в технологию wdm
- •11.1.2. Модель взаимодействия транспортных технологий
- •11.1.3. Блок-схема систем с wdm
- •11.1.4. Канальный (частотный) план
- •11.1.4.2. Перспективный канальный план
- •11.1.5. Классификация wdm на основе канального плана
- •11.1.6. Технологии и схемы реализации мультиплексных модулей wdm
- •11.1.6.1. Технология мультиплексирования на основе интерференционных фильтров
- •11.1.6.2. Технология мультиплексирования на основе явления угловой дисперсии
- •11.1.6.3. Современные технологии мультиплексирования
- •11.1.8. Практический пример 8-канального мультиплексора wdm
- •11.2. Основы солитонных линий связи
- •11.2.1. Экспериментальные солитонные линии связи
- •11.2.2. Использование солитонных генераторов на существующих линиях sdh
- •11.2.3. Перспективы использования солитонных линий связи
- •11.2.3.1. Перспективы повышения скорости передачи
- •11.2.3.2. Перспективы увеличения длины регенерационного участка
- •11.3. Перспективы использования полностью оптических сетей связи
- •Глава 12
- •Кабелей
- •12.1. Классификация типов промышленных оптических волокон
- •12.1.1. Классификация многомодовых волокон
- •12.1.3. Классификация волокон по профилю показателя преломления
- •12.1.4. Классификация волокон по характеристике дисперсии
- •12.1.5. Классификация специальных типов волокон
- •12.2. Характеристики промышленных оптических волокон
- •12.2.2. Основные параметры одномодовых волокон
- •12.2.4. Применение волокна для компенсации дисперсии
- •12.2.5. Оптическое волокно, сохраняющее состояние поляризации
- •12.3. Типы и характеристики промышленных оптических кабелей
- •12.3.1. Классификация типов оптических кабелей
- •- Наружной прокладки (outdoor),
- •- Специальные.
- •12.3.1.1. Кабели внутренней прокладки
- •12.3.1.2. Кабели наружной прокладки
- •12.3.1.3. Специальные кабели
- •12.3.2. Типовые конструкции оптических кабелей
- •12.3.3. Основные параметры промышленных оптических кабелей
- •12.3.4. Оптические кабели воздушной подвески
- •12.3.4.1. Типы кабелей, свзанных с грозотросом
- •- Навиваемые на грозотрос (Wraped);
- •12.4. Маркировка оптических кабелей
- •12.4.1. Маркировка промышленных оптических кабелей
- •12.4.1.2. Маркировка кабелей зао "сокк"
- •12.4.1.3. Маркировка кабелей зао нф "Электропровод"
- •12.4.1.4. Маркировка кабелей по германскому национальному стандарту din
- •12.4.1.5. Маркировка кабелей компании Fujikura
- •12.4.2. Предложения по унификации кодировки и маркировки оптических кабелей 12.4.2.1. Предложение по кодировке кабелей для баз данных
- •12.4.2.2. Предложения по маркировке промышленных кабелей
- •12.4.2.3. Унифицированная маркировка кабеля
- •1) Окнзк-ц(сп)-б(сгл)-пэ(13,5)-ом(2/3)-16(0,34/0,21)
- •2) Окнзл-ц(сп)-по(1,0)-пэ(15,0)-ом(2/3)-24(0,34/0,20)
- •3) Окнзр-ц(ст)-по(1,0)-2с(16/1,6)-пэ(15,5)-ом(2/3)-24(0,34/0,20)
- •Глава 13 Стандарты и терминология цифровых сетей
- •13.1.2. Краткий обзор стандартов sdh и pdh
- •13.1.3. Краткий обзор стандартов волоконно-оптических сетей
- •13.1.5.1. Стандарты на оптическое волокно и вок
- •13.1.5.2. Стандарты на оптические функциональные компоненты и системы
- •13.1.5.3. Стандарты на оптические транспортные сети и волс
- •13.2. Терминология цифровых сетей
- •13.2.1. Истоки появления новой терминологии
- •13.2.2. Об истоках разногласий в терминологии
- •13.2.2.1. Замечание о терминах, используемых в технологиях pdh и sdh
- •13.2.2.2. Замечание об использовании и переводе термина atm
- •13.2.3. Некоторые общие предложения по выбору терминологии
- •13.2.4. Некоторые предложения по выбору терминологии в цифровых технологиях
- •Заключение
- •Список используемых сокращений
- •Оглавление
- •Глава 1. Основы технологии передачи цифровых сигналов (технология pdh) 9
- •Глава 2. Синхронные цифровые сети на основе технологии sdh 42
- •Глава 3. Основы синхронной технологии sonet 151
- •Глава 4. Радиорелейные и спутниковые системы sonet/sdh 166
- •Глава 5. Синхронизация цифровых сетей 176
- •Глава 6. Управление сетью: функционирование, администрирование и обслуживание 191
- •Глава 8. Введение в технологию atm 240
- •Глава 9. Введение в оптические синхронные цифровые сети 283
- •Глава 10. Функциональные элементы оптических сетей 307
- •Глава 11. Новые технологии оптических сетей связи 359
- •Глава 12. Характеристики промышленных оптических волокон и кабелей 383
- •Глава 13. Стандарты и терминология цифровых сетей 412
2.2.4.3. Функция окончания мультиплексной секции
Функция окончания мультиплексной секции MST также работает как функция начальной записи (source) заголовка MSOH на ближнем конце и функция конечного считывания (sink) заголовка MSOH на дальнем конце мультиплексной секции MS. MS является объектом обслуживания между двумя MST (которые сами также включаются в этот объект). Информационные потоки для этого блока показаны на рис. 2-35.
Логическая блок-функция имеет семь эталонных точек С, D, Р, S3. ТО, U2 и Y. Данные на стороне D являются сигналом STM-N, соответствующим стандарту G.707 [16]. Синхронизация осуществляется со стороны входа - эталонной точки ТО. Для потока данных в направлении D->C MST осуществляет начальную запись байтов заголовка MSOH в соответствии со стандартом
G.707
(причем
байты заголовка RSOH
считаются
неопределенными), формируя сигнал STM-N.
Перед
передачей на сторону С для передыдущего
фрейма STM-N
вычисляются
коэффициенты полинома
BIP-24N
(для
всех бит за исключением поля RSOH),
помещаемые
в битовые позиции 3xN
текущего
фрейма, соответствующие байтам В2.
Поток данных блок-функции MST в направлении C-^D представлен сигналом STM-N, у которого байты заголока RSOH уже считаны (регенерированы), и считываются только байты MSOH, после чего STM-N появляется на стороне D.
В первую очередь считываются байты В2 (BIP-24) текущих фреймов, которые сравниваются с вычисленными значениями BIP-24 предыдущих фреймов, при несовпадении генерируется ошибка, подаваемая на эталонную точку S3 (на основе статистики ошибок может быть сформировано сообщение о деградации сигнала - SD или о превышении интервального порога ошибок -IT).
Считанные байты Kl, K2 (APS) передаются на эталонную точку D, а байты D4-D12 на эталонную точку D или на эталонную точку U2 для последующей обработки функцией доступа к заголовку - ОНА. Если MST обнаруживает в битах 6-8 байта К2 "110", то генерируется сигнал индикации дефекта на удаленном конце - MS-RDI (MS-FERF), а если "111", то MS-AIS. В обоих случаях эта ситуация сообщается на эталонную точку S3 для последующей фильтрации с помощью функции SEMF.
Результат контроля считанных бит 5-8 байта S1 появляется на эталонной точке Y и сообщается системе управления и хронирующему источнику SETS.
2.2.4.4. Функция окончания транспорта виртуальных контейнеров
Описанные выше логические функции относились к классу простых функций. Ниже приведены примеры нескольких составных функций. Одной из них является составная функция окончания транспорта виртуальных контейнеров TTF.
Эта функция (см. рис. 2-36) составлена из пяти логически связанных функций: SPI - функции физического интерфейса (сигналов) SDH, RST - функции окончания регенераторной секции, MST - функции окончания мультиплексной секции, MSP - функции защиты мультиплексной секции и MSA - функции адаптации мультиплексной секции. Среди них, только функция MSP может рассматриваться как необязательная.
Показанные на рис. 2-36 точки A-F являются эталонными интерфейсными точками обобщенной функциональной логической схемы обработки SDH (см. рис. 2-32), a N, P. S1-S4, S14, Т0-Tl, U1-U2 и Y - эталонными точками для ссылок на используемые функции и приложенные сигналы (описаны в стандарте G.783 [22 (1.94)]).
Функции SPI, RST и MST были достаточно подробно описаны выше, что касается функций MSP и MSA, то они осуществляют следующие операции.
Функция защиты мультиплексной секции MSP обеспечивает защиту сигнала STM-N от аварии в канале, возникшей при прохождении сигнала в границах мультиплексной секции, т.е. от одной блок-функции MST (на ближнем конце), где MSOH первоначально записывается (генерируется), до другой блок-функции MST (на дальнем конце), где MSOH окончательно считывается (терминируется).
Эта функция осуществляет мониторинг сигнала STM-N, оценивает его состояние, принимая во внимание приоритеты возникающих аварийных состояний и запросов на переключения (внешних и удаленных), и производит переключение соответствующего канала на резервный. Причем две MSP на границах MS соообщаются друг с другом с помощью бит-ориентированного протокола, определенного для байт К1 и К2 MSOH, см. старый (G.782) или новый стандарт G.783 [22].
Функция адаптации мультиплексной секции MSA осуществляет адаптацию маршрутов верхнего уровня к административным блокам AU, сборку и разборку групп административных блоков AUG, мультиплексирование и демультиплексирование, генерацию указателей, обработку и интерпретацию получаемой информации.
Так, например, при движении от точки F к Е блок-функция MSA в эталонной точке F отображает маршруты верхнего уровня на полезную нагрузку блоков AU, которые мультиплексируются в группы AUG. N таких групп затем мультиплексируются по схеме с байт-интерливингом для образования полезной нагрузки модуля STM-N в эталонной точке Е.
Более подробное описание MSP, MSA и других функций обобщенных логических блоков можно найти в стандарте G.783 [22 (1.94)].
2.2.4.5. Номенклатура обобщенных логических функций и модельных понятий
Учитывая, что рассмотренные выше обобщенные логические функции в последнее время широко используются при анализе функционирования оборудования в системах SDH и приводятся в руководствах по аппаратуре SDH различных компаний, ниже (для справок) приведен список их сокращенных обозначений и краткая расшифровка [22]. Там, где возможно, приведены для сравнения соответствующие сокращения, используемые в стандарте ETSI ETS 300 417 [383].
EPPI - Е4, Е31, Е12 - электрический физический интерфейс сигнала PDH
ESPI - ES1 - электрический физический интерфейс сигнала SDH
HCS - контроль соединений виртуальных контейнеров верхнего уровня
НОА - сборка виртуального контейнера верхнего уровня
HOI - интерфейс маршрута верхнего уровня
НОРМ - матрица маршрута верхнего уровня;
НОРТ - окончание маршрута верхнего уровня;
НОТСА - адаптация тандемного соединения верхнего уровня;
НОТСТ - окончание тандемного соединения верхнего уровня;
НРА - S4/TUG - адаптация маршрута верхнего уровня
НРС - S4_C - соединение маршрута верхнего уровня
НРОМ - мониторинг РОН маршрута верхнего уровня
HPT - S4 - окончание маршрута верхнего уровня
HUG - генерация незагруженного маршрута (виртуального контейнера) верхнего уровня
LCS - контроль соединений маршрута нижнего уровня
LOI - интерфейс маршрута нижнего уровня
LPA - S4/P4x, S3/P31x, S12/P0-31c, S12/P12s, S12/P12x - адаптация маршрута нижнего уровня
LPC - S3_C, S2_C, S12_C - соединение маршрута нижнего уровня
LPOM - мониторинг РОН маршрута нижнего уровня
LPT - S3, S12 - окончание маршрута нижнего уровня
LUG - генерация незагруженного маршрута (виртуального контейнера) нижнего уровня
MCF - функция передачи сообщения
MSA - MS1/S4, MS4/S4, MS16/S4 - адаптация мультиплексной секции
MSP - защита мультиплексной секции
MST - MSI, MS4, MS16 - окончание мультиплексной секции
N - эталонная точка канала DCC регенераторной секции
ОНА - функция доступа к заголовку SOH
OSPI - OS1, OS4, OS16, OS64 - оптический физический интерфейс триба SDH
Р - эталонная точка канала DCC мультиплексной секции
РРА - P12s/E12 - адаптация маршрута PDH
PPI - физический интерфейс триба PDH
РРТ - P12s, P12s/P0-31c - окончание маршрута PDH
RST - RSI, RS4, RS16 - окончание регенераторной секции
S - эталонная точка схемы представления системы административного управления
SEMF - функция управления синхронным оборудованием
SETPI - физический интерфейс хронирующего источника синхронного оборудования
SETS - хронирующий источник синхронного оборудования
SPI - физический интерфейс триба SDH
Т - эталонная точка источника синхронизации
TTF - функция окончания транспорта (виртуального контейнера)
U - эталонная точка доступа к заголовку SOH
Y - эталонная точка формирования статуса синхронизации
Замечание: SPI имеет три опции: электрическую или оптическую внутри станции и оптическую между станциями.