Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции_САПР.DOC
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
5.07 Mб
Скачать

Системы автоматизированного проектирования

Все существующие системы автоматизированного проектирования принято делить на три условных направления: CAD, CAM, CAE.

CAD Computer-Aided Design (системы автоматизированного проектирования, САПР) - общий термин для обозначения всех аспектов проектирования с использованием средств вычислительной техники. CAD - системы предназначены для решения конструкторских задач и оформления конструкторской документации. Они именуются системами автоматизированного проектирования – САПР. В современные CAD – системы входят модули моделирования трехмерной объемной конструкции (детали) и оформления чертежей и текстовой конструкторской документации (спецификаций, ведомостей и т.д.) Ведущие трехмерные CAD – системы позволяют реализовать идею сквозного цикла подготовки и производства сложных промышленных изделий. Следует отметить, что отечественный термин "САПР" по отношению к промышленным системам имеет более широкое толкование, чем "CAD" - он включает в себя как CAD, так и CAM, а иногда и элементы CAE.

CAM Computer Aided Manufacturing (системы автоматизированной подготовки производства) - общий термин для обозначения программных систем подготовки информации для станков с числовым программным управлением. Исходными данными для таких систем являются геометрические модели деталей, получаемые из систем CAD. CAM – системы предназначены для проектирования обработки изделий на станке с числовым программным управлением (ЧПУ) и выдачи программ для этих станков (фрезерных, сверлильных, эрозионных, пробивных, токарных, шлифовальных и др.). CAM – системы еще называют системами технологической подготовки производства. В настоящее время они являются практически единственным способом для изготовления сложнопрофильных деталей и сокращения цикла их производства.

CAE Computer-Aided Engineering (системы автоматизированного инженерного анализа) - общий термин для обозначения информационного обеспечения автоматизированного анализа проекта, имеющего целью обнаружение ошибок (прочностные расчеты, коллизии кинематики и т. п.) или оптимизацию производственных возможностей. CAE - системы представляет собой обширный класс систем, каждая из которых позволяет решать определенную расчетную задачу (группу задач), начиная от расчетов на прочность, анализа и моделирования тепловых процессов до расчета гидравлических систем и машин, расчетов процессов литья. В CAЕ – системах также используется трехмерная модель изделия, созданная в CAD – системе.

Общая классификация CAD/CAМ/CAЕ – систем

За почти 30-летний период существования CAD/CAМ/CAЕ – систем сложилась их общепринятая международная классификация:

  • Чертежно-ориентированные системы, которые появились первыми в 70-е годы и успешно применяются до сих пор.

  • Системы, позволяющие создавать трехмерную электронную модель объекта, которая дает возможность решения задач его моделирования вплоть до момента изготовления.

  • Системы, поддерживающие концепцию полного электронного описания объекта (ЕРD – Electronic Product Definition).

EPD – это технология, которая обеспечивает разработку и поддержку электронной информационной модели на протяжении всего жизненного цикла изделия, включая маркетинг, концептуальное и рабочее проектирование, технологическую подготовку, производство, эксплуатацию, ремонт и утилизацию. При применении EPD – концепции предполагается замещение «компонентно - центрического» последовательного проектирования сложного изделия на «изделие - центрический» процесс, выполняемый проектно – производственными командами, работающими коллективно. Вследствие разработки EPD – концепции и появились основания для превращения автономных CAD- CAМ- и САЕ- систем в интегрированные CAD/CAМ/CAЕ – системы.

CAD – системы делятся в свою очередь на специализированные секторы:

МCAD – Механический сегмент CAD – систем;

ЕCAD – Электрический сегмент CAD – систем.

Традиционно существует также деление CAD/CAM/CAE – систем (МCAD – систем) на системы верхнего, среднего и нижнего уровней. Это деление является достаточно условным, т.к. сейчас наблюдается тенденция приближения систем среднего уровня (по различным параметрам) к системам верхнего уровня, а системы нижнего уровня все чаще перестают быть просто двумерными чертежно–ориентированными и становятся трехмерными. Примерами CAD/CAM – систем верхнего уровня являются Pro/Engineer, Unigraphics, CATIA, EUCLID, I-DEAS (все они имеют расчетную часть CAE). В настоящее время широко используются два типа твердотельного геометрических ядра: Parasolid от фирмы Unigraphics Solutions и ASID от Spatial Technology. Наиболее известными CAD/CAM – системами среднего уровня на основе ядра ACIS являются: ADEM (Omega Technology), Cimatron (Cimatron Ltd); Mastercam (CNC Software, inc); AutoCAD 2000, Mechanical Desktop Autodesk Inventor (Autodesk Inc); Powermil (DELCAM); CADdy++ Mechanical Design (Ziegler Informatics GmbH); семейство продуктов Bravo (Unigraphics Solutions), IronCad (VDS) и др.К числу CAD/CAM – систем среднего уровня на основе ядра Parasolid принадлежит: MicroStation Modeler (Bentley System Inc/); CADKEY 99 (CADKEY Corp/); Pro/Desktop (Parametic Technology Corp.); SolidWorks (SolidWorks Corp.); Anvil Express (MCS Inc.); Solid Edge Unigraphics Modeling (Unigraphics Solutions; IronCAD (VDS) и др. CAD – системы нижнего уровня (например, AutoCAD LD, Medusa, TrueCAD, КОМПАС, БАЗИС и др.) применяются при автоматизации чертежных работ.

ЕCAD – Electronic Computer-Aided Design.

Системные среды ЕCAD – средства, составляющие системную среду, помогающие разработчикам в использовании имеющегося программного обеспечения (ПО) САПР, их называют HDL Add-In Tools. Среди них выделяют средства, выполняющие следующие функции:

  1. Интеграция ПО, т.е. обеспечение интероперабельности между различными прикладными программами;

  2. Управление версиями и конфигурацией проекта, т.е. контроль целостности проекта;

  3. Реализация в имеющемся ПО определенных проектных операций с помощью языков расширения;

  4. Генерация моделей и управление библиотеками;

  5. Преобразование данных о схемах из одного представления в другое, например, графических диаграмм или списков цепей в файлы на языках проектирования Verilog или VHDL;

  6. Отладка моделей, контроль ошибок, визуализация формы сигналов и т.п.

Синтез проектных решений - типичный маршрут разработки электронных устройств включает этапы системного, функционального и конструкторского проектирования. Рад ведущих фирм – разработчиков ECAD предлагает средства, покрывающие полный маршрут проектирования. К их числу относятся Synopsys, Cadence Design Systems, Mentor Graphics. На системном этапе формулируются требования к функциональным и схемным характеристикам, разрабатываются алгоритмы, реализуемые в проектируемом устройстве, и структурные схемы. Алгоритмы представляются на языках проектирования аппаратуры (HDL – Hardware Description Language) и выражают поведенческий аспект проектируемого изделия. Поведенческие описания представляют собой исходное задание на функциональное и логическое проектирование. Этапы функционального и логического проектирования поддерживаются в ECAD рядом программ синтеза и моделирования. Функционально – логическое проектирование осуществляется в ECAD с помощью программ – компиляторов логики.

Верификация проектных решений. Верификация (проверка) функциональных и логических схем выполняется с помощью программ моделирования. Верификация требуется после основных проектных операций синтеза и выполняется программами, ориентированными соответственно на уровни системный (архитектурный), регистровых передач или вентильный. На системном уровне используются высокоуровневые модели, выражающие на языках «С» и VHDL алгоритмы, подлежащие реализации и проектируемом устройстве. Проверяется корректность заданных алгоритмов. Далее в цикле проектирования последовательно создаются и используются модели регистрового и вентильного уровней сначала для отработки схем блоков, выявления в них и устранения грубых ошибок, затем для проверки общей схемы взаимодействия блоков с учетом временных задержек. После этапа топологического проектирования моделирование повторяется уже с учетом уточненных задержек, обусловленных паразитными параметрами межсоединений. Для определения значений параметров схемы, получившихся после топологического проектирования, используют специальные программы уточнения задержек, возможно применение и программ аналогового моделирования, например, в ECAD от Mentor Graphics такими программами являются IC Verify и Accusim. Учет задержек возможен в рамках статического или динамического временного анализа. Пример программы статического анализа – Pearl для вентильного и транзисторного уровней, пример программы динамического анализа - TimeMill, используемый на поведенческом, вентильном, переключательном и транзисторном уровнях.

Конструкторское проектирование. Основой ПО конструкторского проектирования являются средства топологического проектирования, среди которых выделяют программы разработки топологии кристаллов свехбольших интегральных схем (СБИС), многокристальных СБИС и печатных плат. Конструкторское проектирование СБИС включает ряд процедур. Компоновка заключается в группировании компонентов по критерию связности. Далее следуют процедуры размещения компонентов, трассировки соединений, сжатия, проверки соответствия топологической и принципиальной схем, подготовки информации для генераторов изображений. Трассировка состоит из фаз глобальной, во время которой намечается положение трасс, и детальной, которая, в свою очередь делится на канальную и локальную. Канальная трассировка служит для конкретизации положения трасс в каналах, а локальная для проведения соединений между каналами и контактами компонентов. Сжатие топологии выполняется во всех направлениях и позволяет уменьшить занимаемую схемой площадь. Для каждой из процедур конструкторского проектирования имеется свое ПО. Среди ПО печатных плат для платформы Wintel используются системы OrCAD, P-CAD и программа SPECCTRA. С помощью редакторов, имеющихся в OrCAD, выполняется интерактивное проектирование печатных плат, поскольку в состав системы входят также средства для анализа и оптимизации электронных схем и проектирования устройств на ПЛИС. С помощью P-CAD 200* выполняется полный цикл проектирования печатных плат, включая интерактивное размещение компонентов, трассировку проводников и выпуск документации. SPECCTRA – одна из наиболее мощных программ проектирования печатных плат, может выполнять размещение и трассировку как в интерактивном, так и в автоматическом режиме. С помощью ПО конструкторского проектирования РЭА должны решаться также задачи механической прочности, разводки кабелей, анализа тепловых режимов. Поэтому в САПР Pro/ENGINEER фирмы РТС включены дополнительные модули Pro/ECAD (подложки, отверстия, размещение) Pro/CABLING (3D кабели). Примерами программ анализа тепловых режимов могут служить программы Auto Therm (используется для расчета тепловых режимов на уровне печатных плат) и FLOTHERM (применяется на более высоких иерархических уровнях в конструкциях РЭА, позволяет принимать обоснованные решения по размещению конструктивов и вентиляторов). С помощью программы Асоника проводятся расчеты конструкций РЭА на вибропрочность и выполняется тепловой анализ.

Схемотехническое проектирование. Программы анализа электронных схем применяют при проектировании принципиальных электрических схем электронных устройств в различных приложениях, а в случае проектирования СБИС – при отработке библиотек функциональных компонентов СБИС. Мировым лидером в области автоматизации схемотехнического проектирования считается программа Spice, в которой выполняется статический, динамический и частотный виды анализа, смешанное логико–аналоговое моделирование, температурный (с индивидуальными значениями температуры по приборам) и шумовой анализы, спектральный анализ, максимизация быстродействия (оптимизируется до 8 параметров). В логической части реализовано событийное моделирование, выявляются риски сбоя, рассчитываются зависимые от нагрузки задержки. Программа характеризуется богатым набором математических моделей элементов. К числу программ аналогового и смешанного моделирования относятся Saber Mixed-technology Simulator, Continuum, Viewanalog ICAP/4Window. Программа ПА7 в которой наряду с видами анализа, обычными для программ анализа электронных схем, реализовано моделирование механических, гидравлических, тепловых процессов, в версия ПА9 ориентирована на использование в распределенных системах проектирования. Схемотехническое проектирование радиотехнических схем отличается рядом особенностей математических моделей и используемых методов, особенно в области СВЧ диапазона. Для анализа линейных схем применяют методы расчета полюсов и нулей передаточных характеристик, моделирование стационарных режимов нелинейных схем выполняют с помощью методов гармонического баланса. Программы анализа радиотехнических схем и их функций: Spectre, TESLA (выполняет спектральный анализ, нелинейное аналоговое и цифровое моделирование телекоммуникационного оборудования), Spectre/XL (моделирование нелинейных устройств типа смесителей и приемников), GENESYS (проектирование радио- и СВЧ устройств, электромагнитное моделирование, синтез схем).

Компонентное (приборное) технологическое проектирование. Предназначено для проектирования компонентов (приборов). Выделяют вертикальное проектирование, касающееся диффузионного профиля (формирования областей в направлении, перпендикулярном поверхности кристалла), и горизонтальное (формирование вида интегрального прибора в поверхностной плоскости). Компонентное проектирование называют также физическим, относя к нему процедуры экстракции параметров спроектированных межсоединений. Моделирование технологических процессов изготовления СБИС относят к технологическому проектированию, поддерживаемому соответствующими программами ECAD.

Специальные применения:

  • Программы семейства Omega PLUS - служат для определения формы сигналов в конструкциях с печатными платами, кабельными соединениями, микрополосковыми линиями и для расчета задержек с учетом паразитных емкостей и индуктивностей.

  • Программа ANSYS включает подсистему EMAG для моделирования электромагнитных полей.

  • В программе EMSight реализован метод моментов для анализа планарных структур.

  • В программе Full Wave реализован анализ электромагнитных полей методом конечных элементов.

  • В программе COLOMB выполняется решение задач электростатики методом граничных элементов.

  • OPNET – позволяет осуществлять иерархическое моделирование на уровнях процессов, узлов, сетей с беспроводными, двух- и многоточечными соединениями, спутниковыми каналами, мобильными каналами.

  • COMNET III – предназначена для интерактивного моделирования работы локальных и территориальных вычислительных сетей.