Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция.3.4 Давление и массоперенос. Статика и Д...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.04 Mб
Скачать

Геометрическое описание уравнения Фика

Во втором уравнении Фика в левой части стоит скорость изменения концентрации во времени, а в правой части уравнения — вторая частная производная, которая выражает пространственное распределение концентрации, в частности, выпуклость функции распределения температур, проецируемую на ось х.

Диффузия в кристалле

Диффузияэто обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры. Диффундировать могут как собственные атомы решетки (самодиффузия или гомодиффузия), так и атомы других химических элементов, растворенных в полупроводнике (примесная или гетеродиффузия), а также точечные дефекты структуры кристалла — междоузельные атомы и вакансии.

Для создания в полупроводнике слоев с различным типом проводимости и p-n-переходов в настоящее время используются три метода введения примеси: термическая диффузия, нейтронно-трансмутационное легирование и ионная имплантация (ионное легирование). С уменьшением размеров элементов ИМС и толщин легируемых слоев второй метод стал преимущественным. Однако и диффузионный процесс не теряет своего значения, тем более, что при отжиге полупроводника после ионного легирования распределение примеси подчиняется общим законам диффузии.

Нейтронно-трансмутационное легирование

При нейтронно-трансмутационном легировании легирующие примеси не вводятся в полупроводник, а образуются («трансмутируют») из атомов исходного вещества (кремний, арсенид галлия) в результате ядерных реакций, вызванных облучением исходного вещества нейтронами. НТЛ позволяет получать монокристаллический кремний с особо равномерным распределением атомов примеси. Метод используется в основном для легирования подложки, особенно для устройств силовой электроники[1].

Когда облучаемым веществом является кремний, под воздействием потока тепловых нейтронов из изотопа кремния 30Si образуется радиоактивный изотоп 31Si, который затем распадается с образованием стабильного изотопа фосфора 31P. Образующийся 31P создаёт проводимость n-типа.

В России возможность нейтронно-трансмутационного легирования кремния в промышленных масштабах на реакторах АЭС и без ущерба для производства электроэнергии была показана в 1980 году. К 2004 году была доведена до промышленного использования технология по легированию слитков кремния диаметром до 85 мм, в частности, на Ленинградской АЭС.[2].

Ионная имплантация

Основная статья: Ионная имплантация

Ионная имплантация позволяет контролировать параметры приборов более точно, чем термодиффузия, и получать более резкие pn-переходы. Технологически проходит в несколько этапов:

  • Загонка (имплантация) атомов примеси из плазмы (газа).

  • Активация примеси, контроль глубины залегания и плавности pn-перехода путем отжига.

Ионная имплантация контролируется следующими параметрами:

  • доза — количество примеси;

  • энергия — определяет глубину залегания примеси (чем выше, тем глубже);

  • температура отжига — чем выше, тем быстрее происходит перераспределение носителей примеси;

  • время отжига — чем дольше, тем сильнее происходит перераспределение примеси.