
- •Перелік питань до підсумкового модуль-контролю (екзамену)
- •Наука хімія та її предмет. Роль хімії у науково-технічному прогресі.
- •Основні положення атомно-молекулярної теорії.
- •Фундаментальні закони хімії. Закони стехіометрії: закон сталості складу, закон кратних відношень.
- •Закони газового стану: закон об'ємних відношень, закон Авогадро.
- •Еквівалент. Закон еквівалентів. Використання стехіометричних законів для розрахунків.
- •Класифікація неорганічних сполук. Оксиди. Основні, кислотні, амфотерні оксиди. Хімічні властивості. Добування.
- •Основи. Кислотність основ. Розчинні і нерозчинні основи. Хімічні властивості. Добування.
- •Кислоти. Основність кислот. Оксигеновмісні, безоксигенові. Хімічні властивості. Добування.
- •Амфотерні гідроксиди.
- •Солі. Cередні, кислі, основні, подвійні солі. Хімічні властивості. Добування.
- •Генетичний зв’язок між класами неорганічних речовин.
- •Перші моделі будови атома (Томсона, Резерфорда).
- •Сучасні уявлення про будову атома.
- •Розподіл електронів на енергетичних рівнях і підрівнях. Принцип Паулі. Правило Гунда.
- •Періодичний закон і періодична система д.І. Менделєєва. Структура періодичної системи.
- •Періодична система і електронні структури атомів.
- •Метали та неметали у періодичній системі.
- •Закономірності зміни властивостей елементів (радіус атомів, енергія іонізації, споріднення до електрона, електронегативність)
- •Основні характеристики хімічного зв'язку: Енергія, кратність і довжина зв'язку.
- •Ковалентний зв’язок. Поняття про валентність. Механізми утворення ковалентного зв'язку. Полярність, напрямленість ковалентного зв’язку.
- •Іонний зв’язок.
- •Водневий зв'язок. Природа й енергія водневого зв'язку. Вандерваальсова взаємодія молекул.
- •Металічний зв’язок.
- •Будова речовини. Фізичні властивості речовин атомної та молекулярної будови.
- •Атоми і молекули
- •Гомогенні і гетерогенні системи. Швидкість гомогенної хімічної реакції.
- •Залежність швидкості реакції від концентрації реагентів. Закон дії мас.
- •Залежність швидкості реакції від температури. Правило Вант-Гоффа.
- •Рівняння Ареніуса. Енергія активації. Поняття про активований комплекс.
- •Поняття про каталіз. Каталізатори.
- •Хімічна рівновага. Рівновага в гомогенних реакціях, Константа рівноваги.
- •Зсув хімічної рівноваги. Принцип Ле-Шателье. Чинники, що впливають на хімічну рівновагу.
- •Енергетика хімічних процесів. Поняття про внутрішню енергію. Перший закон термодинаміки. Закон Гесса. Стандартні ентальпії утворення. Стандартний тепловий ефект реакції.
- •Поняття про другий закон термодинаміки. Ентропія. Напрямок хімічного процесу.
- •Дисперсні системи. Розчини. Характеристика розчинів.
- •Способи вираження складу розчинів.
- •Фізичні властивості розчинів неелектролітів. Осмос. Осмотичний тиск. Закон Вант-Гоффа. Роль осмотичного тиску в життєдіяльності рослин і тварин.
- •Тиск пари над насиченим розчином, закон Рауля. Замерзання і кипіння розчинів.
- •Вода як електроліт. Іонний добуток води. Водневий показник (рН), його визначення.
- •Реакції обміну між електролітами. Гідроліз солей.
- •Окисно-відновні реакції. Ступінь окиснення. Типи окисно-відновних реакцій.
- •Електрохімічні властивості розчинів.
- •Основні положення координаційної теорії Вернера. Номенклатура комплексних сполук. Основні типи комплексних сполук (кс).
- •Природа хімічного зв'язку в кс. Ковалентні комплекси, їх будова та природа зв'язку з точки зору методу валентних зв'язків.
- •Гібридизація орбіталей при утворенні октаедричних, тетраедричних та квадратних комплексів.
- •Гідроген. Будова атома. Ізотопи. Положення в періодичній системі. Будова молекули водню. Фізичні та хімічні властивості. Знаходження в природі. Добування та використання.
- •Елементи VII-а групи
- •Елементи VI-а групи
- •Елементи V-а групи
Поняття про другий закон термодинаміки. Ентропія. Напрямок хімічного процесу.
Дру́гий закон термодина́міки — один із основних законів фізики, закон про неспадання ентропії в ізольованій системі. Він накладає обмеження на кількість корисної роботи, яку може здійснити тепловий двигун. На засадничому рівні другий закон термодинаміки визначає напрямок протікання процесів у фізичній системі - від порядку до безпорядку. Існує багато різних формулювань другого закону термодинаміки, загалом еквівалентних між собою. Для системи із сталою температурою існує певна функція стану S — ентропія, яка визначається таким чином, що
1. Адіабатичний перехід із рівноважного стану A в рівноважний стан B можливий лише тоді, коли
.
2. Приріст ентропії у квазістаціонарному процесі дорівнює
,
де T — температура.
Ентроп́ія S — термодинамічна величина, міра тієї частини енергії термодинамічної системи, яка не може бути використана для виконання роботи, оскільки пов'язана з незворотними процесами розсіяння. Вона також є мірою безладу в термодинамічній системі. Поняття ентропії було вперше введено у 1865 році Рудольфом Клаузіусом. Він визначив зміну ентропії термодинамічної системи при оборотному процесі як відношення загальної кількості теплоти ΔQ, отриманої або втраченої системою, до величини абсолютної температури T:
Рудольф Клаузіус дав величині S назву «ентропія», утворивши її від грецького слова τρoπή, «зміна» (зміна, перетворення). Формула визначає тільки зміну ентропії, а не її абсолютну величину, тому в термодинаміці ентропія визначається лише з точністю до сталої.
Зв'язок між теплоємністю та ентропією дається формулою
Згідно з рівнянням
На значення ΔG великий вплив має температура. Цей вплив визначається знаком і величиною ΔS. При ΔS > 0 з підвищенням температури (збільшенням Т) негативне значення ΔG буде зменшуватися, а при ΔS < 0 — збільшуватися.
Приклад реакції, яка проходить зі зменшенням ентропії системи (рис. 36):
Рис. 36. Вплив температури на значення ΔG реакції, яка проходить із зменшенням ентропії системи.
Приклад реакції, яка проходить зі збільшенням ентропії системи (рис. 37):
Рис. 37. Вплив температури на значення ΔG реакції, яка проходить зі збільшенням ентропії системи.
Приклад реакції, у якій ентропія системи практично не змінюється (рис. 38):
Рис. 38. Вплив температури на значення ΔG реакції, яка проходить без зміни ентропії системи.
Дисперсні системи. Розчини. Характеристика розчинів.
Диспе́рсна систе́ма (рос. дисперсная система, англ. dispersive system, нім. Dispersionssystem n) — гетерогенна система з двох або більше фаз з сильно розвиненою поверхнею розділу між ними. Фізично неоднорідна система, що складається з дисперсійного середовища та дисперсної фази. Прикладами дисперсних систем є колоїдні розчини та розчини високомолекулярних сполук (ВМС).
Фази дисперсної системи не змішуються між собою і не реагують — тому між ними існує поверхня розділу цих фаз. Одна фаза (дисперсна фаза) розподілена в іншій (дисперсійне середовище). Фази можна розділити між собою фізичними способами: коагуляція, пептизація та ін.
Одна з фаз утворює неперервне дисперсійне середовище (рідина, газ, тверде тіло), в об'ємі якого розподілена (розосереджена) дисперсна фаза у вигляді дрібних твердих частинок, крапель рідини або бульбашок газу.
Дисперсна система з частинками крупнішими 10-4 см називають грубодисперсними, з частинками менших розмірів — високодисперсними або колоїдними.
Системи з газовим дисперсійним середовищем — аерозолі та аерогелі; з рідким — золі, емульсії, суспензії, піни; з твердим — системи типу рубінового скла,опалу, піноматеріали.
Дисперсні системи можуть бути структурованими, якщо між частинками виникають контакти.
Поширеність
Дисперсні системи значно поширені в природі (гірські породи, ґрунти, хмари, тканини живих організмів тощо). До них належать також цементні розчини, бетони,фарби і т.і.
Рóзчини (рос. раствор, англ. solution, нім. Lösung f) — цілком однорідні суміші з двох (або кількох) речовин, в яких молекули(або іони) одної речовини рівномірно розподілені між молекулами іншої речовини. Розчин — однофазна, гомогенна, багатокомпонентна система змінного хімічного складу. Практично усі рідини, що є вприроді, являють собою розчини. Крім рідинних, існують газові (газуваті) розчини — їх прийнято називати газовими сумішами (наприклад, повітря) і тверді розчини (наприклад, деякі сплави). Як правило, під розчином розуміють рідку молекулярно-дисперсну систему (так звані істинні розчини, англ. true solution). Розчинником називають компонент, концентрація якого суттєво більша концентрації інших компонентів. Розчинник у чистому вигляді має той самий агрегатний стан, що й розчин. Процес утворення розчину полягає у руйнуванні зв'язків між молекулами (йонами) вихідної речовини і утворенні нових зв'язків між молекулами (йонами) розчиненої речовини і розчинника. За концентрацією розчиненої речовини розчини поділяють на насичені, ненасичені й пересичені. За наявністю чи відсутністю електролітичної дисоціації розчиненої речовини на йони розрізняють розчини електролітів і розчини неелектролітів. Крім того, виділяють розчини полімерів, головна особливість яких — дуже велика різниця у розмірах молекул розчинника і розчиненої речовини.
У розчинах протікає багато природних і промислових процесів. З ними пов'язане формування покладів ряду корисних копалин, їх видобування і переробка, розділення речовин, глибоке очищення тощо.
За своїми властивостями розчини займають проміжне місце між механічними сумішами і хімічними сполуками. Від механічних сумішей вони відрізняються головним чином своєю однорідністю і виділенням або поглинанням тепла при утворенні, а від хімічних сполук тим, що склад їх не сталий і може змінюватись у досить широких межах.