Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мембрана-Балка Михеев.DOC
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
969.73 Кб
Скачать

7.1.1.Методы косвенных измерения давления

В отличие от методов прямых измерений давления, на которых ос­нованы рассмотренные ранее жидкостные, поршневые и деформацион­ные манометры, методы косвенных базируются на измерении физичес­ких величин (температуре, объеме), значения которых связаны с давле­нием известными физическими закономерностями, или на изменении фи­зических свойств измеряемой среды под действием давления (теплопро­водности, вязкости, электропроводности и пр.).

Косвенные методы, как правило, находят применение в тех случаях, когда прямые методы изме­рения давления трудно осуществимы, например, при измерении весьма малых давлений (вакуумные измерения) или при измерениях сверхвы­соких давлений.

7.1.2. Косвенные методы, основанные на уравнении состояния идеального газа

Связь между важнейшими термодинамическими параметрами газа определяется соотношением

pV = const; (24)

T

где р — асолютное давление газа; Т — абсолютная температура газа; Vобъем, занимаемый газом.

Соотношение (24) называется объединенным газовым законом и формулируется следующим образом: при постоянной массе газа произ­ведение объема на давление, деленное на абсолютную температуру газа, есть величина, одинаковая для всех состояний этой массы газа.

Уравнение состояния для произвольной массы идеального газа (урав­нение Клайперона-Менделеева) имеет вид

pV= mRT; (25)

μ

где т — масса газа; μ — масса одного киломоля газа; Rуниверсальная газовая постоянная.

Для упрощения процесса измерения давления один из параметров со­стояния или V) сохраняется постоянным. Тогда давление однозначно определяется по результатам измерения V или Т.

Например, при измере­нии изменений атмосферного давления в баронивелировании нашли при­менение газовые барометры, принцип действия которых основан на ис­пользовании уравнения состояния газа (24) при постоянной температу­ре, т. е. при постоянной массе газа и неизменной температуре давление об­ратно пропорционально занимаемому газом объему.

Принципиальная схема газового барометра конструкции Штриплинга изображена на рис. 13. Прибор состоит из двух камер, одна из кото­рых 2 может быть сообщена с атмосферным давлением, а другая 3 зам­кнута. Обе камеры связаны между собой капилляром, в середине кото­рого находится капля масла 1, выполняющая роль указателя нуля. При равенстве давлений в камерах капля устанавливается на нулевой отмет­ке.

Рис. 13. Принципиальная схема га­зового барометра

Равенство давлений достигается изменением объема камеры 3 посред­ством перемещения сильфона 4 с помощью винта и червячной передачи с

отсчетом числа оборотов червяка по цифровому счетчику. При погреш­ности термостатирования 0,001°С изменения давления фиксируются с погрешностью менее 0,5 Па.

В дифференциальном газовом баро­метре системы Д.И. Менделеева (рис. 14) изменение атмосферного дав­ления определяется комбинированным методом. Барометр состоит из замкнуто­го сосуда 1, соединенного с давлением ок­ружающего воздуха при помощи V-образного жидкостного манометра 2.

Рис. 14. Дифференциальный га­зовый барометр

Барометр основан на уравновешива­нии изменений атмосферного давления как столбом жидкости, так и сжатием (расширением) газа в замкнутом сосуде по закону Бойля-Мариотта. Как и ранее, необходимо тщательное термостатирование со­суда 1 или введение температурной поправки, равной 0,37 % на 1°С.

Следует отметить, что рассмотренные выше газовые барометры в связи с появлением высокоточных деформационных барометров анало­гичного назначения в настоящее время практически не применяются. В отличие от этого в области вакуумных измерений указанный принцип на­ходит широкое применение. Компрессионные („компрессия" — сжатие) и экспансионные („экспансия" - расширение) манометры являются ос­новными средствами воспроизведения к передачи единицы давления в области вакуумных измерений в диапазоне от 10-3 до 103 Па (10-5 -10 мм рт. ст.).