- •1. Понятие автоматизированного электропривода. Его структурные схемы и характеристики.
- •2.Значение автоматизированного электропривода в народном хозяйстве.
- •4.Регулирование скорости, тока и момента электропривода с дпт - нв в схеме с шунтированием якоря. Расчёт и построение характеристик двигателя. Выбор регулировочных резисторов.
- •5. Регулирование угловой скорости уменьшением магнитного потока.
- •6. Регулирование угловой скорости дпт нв путем изменения напряжения на якоре в системе г-д.
- •7.Формирование переходных процессов в системе электропривода «генератор - дпт нв».
- •14. Регулирование координат электропривода в системе источник тока – электродвигатель.
- •16. Регулирование координат асинхронного двигателя с помощью резисторов в цепи статора и ротора.
- •17. Регулирование скорости асинхронного двигателя изменением числа пар полюсов.
- •19.Статические преобразователи частоты и напряжения с непосредственной связью. Устройство, принцип работы и их энергетические возможности.
- •25.Импульсный способ регулирования координат в асинхронных электроприводах.
- •26. Назначение следящих электроприводов. Общие принципы их построения.
- •27. Замкнутые системы частотных асинхронных электроприводов. Их построение и анализ работы.
- •29. Следящий электропривод постоянного тока релейного действия с потенциометрическими датчиками.
- •30. Следящий электропривод постоянного тока непрерывного действия с электромашинным усилителем (эму) и сельсинами.
- •31.Следящий электропривод постоянного тока непрерывного действия с тиристорным преобразователем и синусно - косинусными вращающимися трансформаторами (сквт).
- •32. Цифрово - аналоговый следящий электропривод переменного тока. Устройство, принцип работы и анализ
- •33.Достоинства и недостатки следящих электроприводов различных типов.
- •38.Назначения и отличия позиционного и контурного электроприводов с чпу.
- •39. Принцип работы электропривода с чпу при использовании шагового электродвигателя.
- •40. Функциональная схема электропривода с чпу с использованием микропроцессора. Опишите назначение и принцип работы каждого блока, их взаимосвязь и работу всей схемы в целом.
- •42.Положительные стороны применения адаптивного управления электроприводом на базе применения электроприводов с чпу.
- •43. Дайте характеристику взаимосвязи и достоинств электроприводов с чпу для автоматизации цехового производства (на примере станочного или другого).
- •44. Что же в целом даёт применение автоматизированного электропривода для ведения технологического процесса на производстве
- •45. Приведите электрические схемы и опишите принцип работы операционных усилителей, применяемых в замкнутых автоматизированных электроприводах.
- •46. Приведите электрические схемы и опишите принцип работы задатчиков интенсивности, применяемых в замкнутых автоматизированных электроприводах.
- •47.Устройство и принцип работы цифровых кодирующих дисков.
- •48. Опишите достоинства цифровой и аналоговой схем в цифрово - аналоговых автоматизированных электроприводах.
- •49. Опишите целесообразность применения разомкнутого или замкнутого автоматизированного электропривода при изменении момента на валу электродвигателя.
16. Регулирование координат асинхронного двигателя с помощью резисторов в цепи статора и ротора.
Данный способ регулирования координат, называемый часто реостатным, может быть осуществлен введением добавочных активных резисторов в статорные или роторные цепи АД. Он привлекает в первую очередь простотой своей реализации, отличаясь в то же время невысокими показателями качества регулирования и экономичностью.
Рис. 8.14. Схемы включения АД с фазным ротором (а) и с короткозамкнутым ротором (б)
Включение добавочных резисторов R1д в цепь статора применяется главным образом для регулирования (ограничения) в переходных процессах тока и момента АД с короткозамкнутым ротором.
Все искусственные электромеханические характеристики располагаются в первом квадранте ниже и левее естественной. С учетом того, что скорость идеального холостого хода ω0 при включении R1д не изменяется, получаемые искусственные электромеханические характеристики можно представить семейством кривых (рис.8.15 а).
Характеристики 2–4 расположены ниже естественной характеристики 1, построенной при R1д = 0, причем большему значению R1д соответствует больший наклон искусственных характеристик 2-4.
Механические характеристики АД представлены на рисунке 8.15 б.
Координаты точки экстремума Мк и Sк изменяются при варьировании R1д, а именно: при увеличении R1д критический момент Мк и критическое скольжение Sк уменьшаются. Уменьшается и пусковой момент.
В то же время искусственные механические характеристики (рис. 8.15б) мало пригодны при регулировании скорости АД: они обеспечивают небольшой диапазон изменения скорости; жесткость характеристик АД и его перегрузочная способность, характеризуемая критическим моментом, по мере увеличения R1д снижается; способ отличает и низкая экономичность. В силу этих недостатков регулирование скорости АД с помощью активных резисторов в цепи его статора применяется редко.
Включение добавочных резисторов R2д в цепь ротора применяется как с целью регулирования тока и момента АД, так и его скорости (рис. 8.14а).
Искусственные электромеханические характеристики при R2д = var имеют вид, показанный на рисунке 8.15а, и могут использоваться для регулирования (ограничения ) пускового тока Iкз = Iп .
Скорость идеального холостого хода АД ω0 и максимальный (критический) момент двигателя Мк остаются неизменными при регулировании R2д , а критическое скольжение Sк изменяется.
Выполненный анализ позволяет построить естественную 1 (R2д = 0) и искусственные 2–3 (R2д3 > R2д2) характеристики (рис. 8.16) и сделать заключение, что за счет изменения R2д имеется возможность повышать пусковой момент АД вплоть до критического момента Мк без снижения перегрузочной способности двигателя, что весьма важно при регулировании его скорости.
Диапазон регулирования скорости небольшой – около 2–3 – из-за снижения жесткости характеристик и роста потерь по мере его увеличения. Плавность регулирования скорости, которая изменяется только вниз от основной, определяется плавностью изменения добавочного резистора R2д. Затраты, связанные с созданием данной системы ЭП, невелики.
С увеличением скольжения S возрастают потери в роторной цепи, поэтому реализация большого диапазона регулирования скорости приводит к значительным потерям энергии и снижению КПД ЭП.
Этот способ нашел широкое применение например, в ЭП подъемно-транспортных машин и механизмов.
