- •Ставрополь
- •Глава16. Надёжность программного обеспечения. 127
- •Введение
- •Глава 1. Основы теории надежности
- •Основные понятия
- •1.2. Классификация и характеристики отказов
- •1.3. Составляющие надежности
- •1.4. Основные показатели надежности
- •Контрольные вопросы:
- •Глава 2. Количественные показатели безотказности
- •2.1. Общие понятия
- •2.2. Основные сведения о математических моделях расчета в теории вероятностей
- •2.2. 1. Основные понятия теории множеств
- •2.2. 2. Аксиомы теории вероятностей
- •2.2. 3. Основные правила теории вероятностей
- •2.2.4. Следствия основных теорем
- •Контрольные вопросы и задачи:
- •Глава 3. Показатели безотказности
- •3.1. Вероятность безотказной работы (вбр)
- •3.2. Плотность распределения отказов (про)
- •3.3. Интенсивность отказов (ио)
- •Контрольные вопросы и задачи:
- •Глава 4. Уравнение связи показателей надежности числовые характеристики безотказности
- •4.1. Уравнение связи показателей надежности
- •4.2. Числовые характеристики безотказности невосстанавливаемых объектов
- •Глава 5. Математические модели теории надежности. Статистическая обработка результатов испытаний
- •5.1. Общие понятия о моделях надежности
- •5.2. Статистическая обработка результатов испытаний и определение показателей надежности
- •5.2.1. Постановка задачи
- •5.2.2. Алгоритм обработки результатов и расчета показателей надежности
- •Контрольные вопросы:
- •Глава 6. Нормальный закон распределения наработки до отказа
- •6.1. Классическое нормальное распределение
- •6.2. Усеченное нормальное распределение
- •Контрольные вопросы и задачи:
- •Глава 7.Законы распределения наработки до отказа: экспоненциальный, логнормальный и гамма-распределение
- •7.1. Экспоненциальное распределение
- •7.2. Логарифмически нормальное (логнормальное) распределение
- •7.3. Гамма–распределение
- •Контрольные вопросы и задачи:
- •Глава 8.Надежность систем. Общие понятия и определения
- •8.1. Основы расчета надежности систем. Общие понятия
- •8.2. Системы с резервированием. Общие понятия
- •Контрольные вопросы:
- •Глава 9. Надежность основной системы
- •Контрольные вопросы и задачи:
- •Глава 10.Надежность систем с нагруженным резервированием
- •Контрольные вопросы:
- •Глава 11.Надежность системы с ненагруженным резервированием
- •Контрольные вопросы:
- •Глава 12. Надежность систем с облегченным и со скользящим резервом
- •1. Надежность систем с облегченным резервом
- •12.2. Скользящее резервирование
- •Контрольные вопросы:
- •Глава 13. Надежность восстанавливаемых объектов и систем
- •13.1. Постановка задачи. Общая расчетная модель
- •13.2. Показатели надежности восстанавливаемых систем
- •13.3. Связь логической схемы надежности с графом состояний
- •Контрольные вопросы:
- •Глава 14. Надежность объектов при постепенных отказах. Основные расчетные модели
- •14.1. Постановка задачи. Основные понятия и определения
- •14.2. Анализ случайных процессов изменения оп объектов
- •14.3. Модели процессов приближения объекта к отказам
- •14.3.1. Основные классы моделей
- •14.3.2. Основные типы моделей
- •Контрольные вопросы:
- •Глава 15.Надежность объектов при постепенных отказах. Определение времени сохранения работоспособности
- •15.1. Состав рассчитываемых показателей
- •15.1.1. Вероятность нахождения в работоспособном состоянии
- •15.1.2. Плотность распределения наработки до отказа
- •15.2. Общие модели расчета плотности распределения наработки до отказа
- •15.2.1. Случайный процесс х(t) отличен от линейного.
- •15.3. Определение времени сохранения работоспособности
- •15.3.1. Веерные модели изменения оп
- •15.3.2. Равномерная модель изменения оп
- •15.4. Частные вопросы оценки параметрической надежности объектов
- •15.4.1. Оценка надежности объектов при разрегулировании
- •Контрольные вопросы:
- •Глава16. Надёжность программного обеспечения.
- •16.1Сравнительные характеристики программных и аппаратурных отказов.
- •16.3 Основные проблемы исследования надёжности программного обеспечения.
- •16.4 Критерии оценки надёжности программных изделий.
- •16.5 Критерии надёжности сложных комплексов программ.
- •16.6 Математические модели надёжности комплексов программ.
- •16.7 Проверка математических моделей.
- •Литература
Контрольные вопросы:
Основные цели и задачи расчета показателей надежности систем?
Определите состав рассчитываемых показателей безотказности системы?
Перечислите и поясните основные этапы расчета надежности систем?
Что такое структура надежности?
Что такое математическая модель расчета надежности?
Какие виды резервирования существуют. В чем отличие нагруженного и ненагруженного резервирования?
Что такое кратность резервирования и в чем отличие целой и дробной кратности?
Глава 9. Надежность основной системы
Основные системы (ОС) являются простейшими техническими системами, в которых отказ одного элемента приводит к отказу всей системы.
Работоспособность основной системы обеспечивается при условии, когда все n элементов системы находятся в работоспособном состоянии.
Поскольку события, заключающиеся в работоспособности элементов системы, являются независимыми, то
вероятность безотказной работы (ВБР) ОС: |
|
вероятность отказа (ВО) ОС: |
|
При идентичных элементах ОС P1(t) = … = Pn(t) = P(t):
ВБР: |
Pс(t) = P n(t) ; |
ВО: |
Qс(t) = 1 - P n(t) . |
Поскольку на участке нормальной эксплуатации наработку до отказа можно описать экспоненциальным распределением каждого элемента
Pi(t) = exp( - i · t),
где i = const, то
ВБР ОС: |
|
Используя уравнение связи показателей безотказности, выражающее ВБР любого объекта, в том числе и системы
и полагая
получаем, что интенсивность отказов (ИО) ОС равна сумме ИО элементов:
В общем случае, для любого распределения наработки ИО системы равна:
Для n идентичных элементов 1(t) = … = n(t) = (t):
При экспоненциальном распределении наработки до отказа каждого из n элементов ОС Pi(t) = exp( - i · t), где i = const показатели безотказности ОС определяются:
|
Неидентичные элементы
1 = … = n = |
Идентичные элементы 1 = … = n = |
ВБР: |
|
|
ВО: |
|
|
ИО: |
|
|
МО наработки до отказа: |
|
|
Выражения для МО наработки до отказа получены из формулы:
ПРО: |
fс(t) = - d Pс(t)/ dt = с exp( - t · с ); |
fс(t) = n · · exp( - n · t · ) |
Таким образом, при экспоненциальной наработке до отказа каждого из n элементов, распределение наработки до отказа ОС также подчиняется экспоненциальному распределению.
Для ОС надежность меньше надежности каждого из элементов. С увеличением числа элементов надежность ОС уменьшается.
Например, при n = 1000, Pi(t) = 0,99, Pс(t) < 10 - 4 и средняя наработка до отказа системы в 1000 раз меньше средней наработки каждого из элементов.
Распределение норм надежности основной системы по элементам.
Рассмотренные модели позволяют определить показатели безотказности ОС по известным показателям надежности элементов – так решается задача при завершении технического проекта, после испытаний опытных образцов системы и составляющих элементов.
Иначе: значения Pi(t) i–х элементов хорошо известны и лишь уточняется значение Pс(t) и сравнивается с заданным в ТЗ на проект. При этом, если Pс(t) получается меньшей, чем в ТЗ, то принимаются меры по ее повышению (резервирование, использование более надежных элементов и т. п.).
На начальной стадии проектирования в ТЗ указывается лишь ВБР проектируемой системы. При проектировании используются как элементы с известной надежностью, так и элементы, о надежности которых можно судить лишь по их аналогам (прототипам). При этом необходима предварительная оценка надежности элементов, которая, в дальнейшем, уточняется в ходе испытания опытных образцов системы и элементов.
Существуют различные способы распределения норм надежности:
по принципу равнонадежности элементов;
с учетом данных об аналогах элементов;
с учетом перспектив совершенствования элементов.
Выбор того или иного способа зависит от имеющейся информации о проектируемой системе.
1. Распределение надежности по принципу равнонадежности элементов:
Задано: по техническому заданию Pс(t); n – число элементов системы.
Распределение наработки до отказа элементов – экспоненциальное.
При идентичных (равнонадежных) элементах ( 1 = … = i = … = n= ):
интенсивность отказа i–го элемента: ln Pс(t) = - n · · t.
2. Распределение надежности с учетом данных о надежности аналогов.
Задано: по техническому заданию ТЗ Pс(t); n – число элементов системы;
интенсивности
отказов аналогов –
аi
,
.
Определяется доля отказов системы из-за отказов i–го элемента:
ki = аi / ас,
где
–
ИО системы по данным об аналогах.
Определяется ИО проектируемой системы: Pс(t) = exp( - с · t )
с = - ln Pс(t) / t ( с > 0; ln P(t) < 0),
и ИО составляющих элементов:
i = ki · с .
3. Распределение надежности с учетом перспектив совершенствования элементов.
Задано: по техническому заданию ТЗ Pс(t); n – число элементов системы;
Изменение
ИО аналогов за временной период [19XY по
200Z] годы, аппроксимировано выражением
аi
=
(
аi
, 19 XY),
где аi – ИО i–го аналога в 19XY году.
По выражению аi = ( аi , 19 XY) экстраполируется ИО элементов – аналогов к нынешнему году (году проектирования системы), получаются: а1(94),…, аi(94), ….
Определяется доля отказов системы из-за отказов i–го элемента:
и ИО элементов системы:
i = ki · с = ki ·(- ln Pс(t) / t).
Принципы распределения показателей надежности по 2 и 3 способам отличаются лишь экстраполяцией значений на год проектирования.
