Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие надежность инф.систем.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
1.75 Mб
Скачать

Глава 5. Математические модели теории надежности. Статистическая обработка результатов испытаний

5.1. Общие понятия о моделях надежности

 

Для решения задач по оценке надежности и прогнозированию работоспособности объекта необходимо иметь математическую модель, которая представлена аналитическими выражениями одного из показателей P(t) или f(t) или (t). Основной путь для получения модели состоит в проведении испытаний, вычислении статистических оценок и их аппроксимации аналитическими функциями.

В последующих лекциях будут рассмотрены модели, используемые в теории надежности.

Выясним, как изменяется безотказность объектов при их эксплуатации, что позволит классифицировать модели и определить возможности их применения.

Опыт эксплуатации показывает, что изменение ИО (t) подавляющего большинства объектов описывается U – образной кривой (рис. 5.1).

 

Рис. 5.1

 Кривую можно условно разделить на три характерных участка:

первый – период приработки,

второй – период нормальной эксплуатации,

третий – период старения объекта.

Период приработки объекта имеет повышенную ИО, вызванную приработочными отказами, обусловленными дефектами производства, монтажа, наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем.

В период нормальной эксплуатации ИО уменьшается и практически остается постоянной, при этом отказы носят случайный характер и появляются внезапно, прежде всего из-за несоблюдения условий эксплуатации, случайных изменений нагрузки, неблагоприятных внешних факторов и т. п. Именно этот период соответствует основному времени эксплуатации объекта.

Возрастание ИО относится к периоду старения объекта и вызвано увеличением числа отказов от износа, старения и других причин, связанных с длительной эксплуатацией.

Вид аналитической функции, описывающей изменение показателей надежности P(t), f(t) или (t), определяет закон распределения случайной величины, который выбирается в зависимости от свойств объекта, его условий работы и характера отказов.

 

5.2. Статистическая обработка результатов испытаний и определение показателей надежности

5.2.1. Постановка задачи

 По результатам испытаний N невосстанавливаемых одинаковых объектов получена статистическая выборка – массив наработки (в любых единицах измерения) до отказа каждого из N испытывавшихся объектов. Выборка характеризует случайную величину наработки до отказа объекта T = {t}.

Необходимо выбрать закон распределения случайной величины T и проверить правильность выбора по соответствующему критерию.

Подбор закона распределения осуществляется на основе аппроксимации (сглаживания) экспериментальных данных о наработке до отказа, которые должны быть представлены в наиболее компактном графическом виде. Выбор той или иной аппроксимирующей функции носит характер гипотезы, которую выдвигает исследователь. Экспериментальные данные могут с большим или меньшим правдоподобием подтверждать или не подтверждать справедливость той или иной гипотезы. Поэтому исследователь должен получить ответ на вопрос: согласуются ли результаты эксперимента с гипотезой о том, что случайная величина наработки подчинена выбранному им закону распределения? Ответ на этот вопрос дается в результате расчета специальных критериев.