- •Лекция №3 «Cистемы технической диагностики и мониторинга устройств транспортной техники
- •Прогнозирование случайных процессов
- •Выбор прогнозирующих параметров
- •Лекция №12 «Область применения датчиков на железнодорожном транспорте» Преобразование измеряемой величины в процессе измерений
- •1) Емкостные датчики
- •Лекция №13 «Индуктивные датчики. Датчики пути и скорости»
- •Датчики пути и скорости
- •Датчики контроля проследования поезда
- •Лекция №14 «Потенциометрические, оптические датчики. Термоэлектрические и гальванические преобразователи»
- •Гальванический преобразователь
- •Термоэлектрические преобразователи
- •Оптические датчики
- •Лекция №15 «Пьезоэлектрические и тензочувствительные преобразователи»
- •Тензочувствительные преобразователи (тензорезисторы)
- •3.5 Заключение
- •4. Системы обнаружения перегретых букс на ходу поезда
- •4.1. Назначение и принцип работы аппаратуры
- •4.2 Напольное оборудование аппаратуры обнаружения перегретых букс
- •4.3 Комплекс технических средств ктсм
- •4.4. Требования к размещению оборудования средств контроля аварийных букс
- •4.5 Заключение
- •5. Принцип действия и основные параметры точечных путевых датчиков счета осей
- •5.1 Магнитный точечный датчик прохода колес
- •5.2 Вибродатчики, используемые в подсистеме диск-к
- •5.3 Индуктивные датчики в системе счета осей
- •5.4 Многофункциональные датчики
- •5.5 Индукционные электромагнитные путевые датчики
- •5.6 Путевой датчик системы укп со
- •5.7 Заключение
- •6. Системы технического контроля и диагностики подвижного состава
- •6.1 Диагностика технического состояния грузового поезда
- •6.2 Классификация диагностических систем контроля параметров грузовых вагонов
- •6.2.1 Комплекс технических средств многофункциональный
- •6.2.2 Система комплексного контроля технического состояния подвижного состава на ходу поезда диск-2
- •6.2.3 Автоматизированный бесконтактный комплекс контроля колесных пар подвижного состава
- •6.2.4 Система автоматизированного контроля механизма автосцепки «сакма»
- •6.2.5 Автоматизированная система контроля открытых, незафиксированных и деформированных люков и дверей вагонов
- •6.2.6 Детектор дефектных колес ддк
- •6.2.7 Автоматизированный диагностический комплекс для измерения колесных пар вагонов на подходах к станции
- •6.2.8 Устройство контроля сползания буксы с шейки оси
- •6.2.9 Устройство контроля тормозов поезда уктп
- •6.2.10 Комплексная информационно-измерительная система технического диагностирования подвижного состава
- •6.3 Автоматизированная система контроля подвижного состава
- •6.4 Функции информационно-управляющего комплекса асу спто
- •6.5 Информационное взаимодействие асу спто с системами технической диагностики технического состояния вагонов
- •6.6 Заключение
- •7. Системы автоматической локомотивной сигнализации
- •7.1 Назначение и принцип действия алс
- •Путевые устройства алс
- •7.3 Локомотивные устройства алс
- •7.4 Система автоматического управления торможением поездов
- •7.5 Комплексное локомотивное устройство безопасности
- •7.6 Заключение
- •8. Нормативные значения диагностических параметров
- •8.1 Контролепригодность транспортной техники
- •9. Роль и место методов неразрушающего контроля для обеспечения надёжности и долговечности сложных систем с высокой ценой отказа
- •9.1 Проблемы выявления дефектов и характеристики методов нк
- •9.2 Эффективность комплексного применения методов нк
- •10. Магнитное поле. Основы феррозондового контроля
- •10.1 Силовые линии магнитного поля
- •10.2 Магнитные величины
- •10.3 Кривая намагничивания и петля гистерезиса
- •10.4 Магнитное поле рассеяния дефектов
- •10.5 Обнаружение дефектов
- •10.6 Феррозондовый метод
- •11. Намагничивание детаей
- •11.1 Приборы феррозондового контроля
- •11.2 Феррозондовые преобразователи
- •11.3 Приборы феррозондового контроля
- •12. Технология феррозондового контроля
- •12.1 Подготовка оборудования
- •12.1.1 Подготовка намагничивающих устройств и систем
- •12.1.2 Подготовка дефектоскопа и отраслевого стандартного образца
- •12.2 Подготовка деталей к контролю
- •12.3 Сканирование и обнаружение дефектов
- •12.4 Контроль боковой рамы
- •12.5 Контроль надрессорной балки
- •12.6 Контроль деталей автосцепного устройства
- •12.6.1 Контроль корпуса автосцепки
- •12.6.2 Контроль тягового хомута автосцепного устройства
- •12.7 Контроль дисков колес
- •13. Условные уровни чувствительности феррозондового метода
- •13.1 Намагничивающие устройства и системы
- •13.1.1 Электромагнитные устройства
- •13.1.2 Приставные устройства с постоянными магнитами
- •13.2 Феррозондовые приборы
- •13.2.1 Феррозондовые преобразователи
- •13.2.2 Феррозондовые дефектоскопы-градиентометры
- •13.2.3 Дефектоскоп-градиентометр дф-103
- •13.2.4 Дефектоскоп-градиентометр дф‑105
- •13.2.5 Дефектоскоп-градиентометр феррозондовый дф‑201.1
- •13.2.6 Магнитоизмерительные феррозондовые комбинированные приборы ф‑205
- •13.2.7 Магнитоизмерительный феррозондовый комбинированный прибор ф‑205.03
- •13.3 Феррозондовые измерители градиента и напряженности магнитного поля
- •13.3.1 Измеритель напряженности магнитного поля мф‑107
- •13.3.2 Измеритель напряженности магнитного поля мф‑109
- •13.3.3 Измеритель градиента напряженности магнитного поля гф‑105
- •13.4 Стандартные образцы
- •13.5 Состав и назначение дефектоскопных установок
Лекция №15 «Пьезоэлектрические и тензочувствительные преобразователи»
Пьезоэлектрические преобразователи основаны на использовании прямого пьезоэлектрического эффекта, заключающегося в появлении электрических зарядов на поверхности некоторых кристаллов (кварца, сёгнетовой соли и др.) под влиянием механических напряжений. Это преобразователи генераторного типа, однако, их выходная мощность мала, поэтому к выходу преобразователя должен быть подключен измерительный усилитель с возможно большим входным сопротивлением (1011Ом и более).
В пьезоэлектрических преобразователях применяют главным образом кварц, который обладает высокой механической прочностью и очень слабой зависимостью параметров от температуры.
Тензочувствительные преобразователи (тензорезисторы)
Принцип действия термопреобразователей сопротивления (терморезисторов) основан на зависимости электрического сопротивления проводников и полупроводников от температуры. В основе работы тензорезисторов [7] лежит явление тензоэффекта, заключающееся в изменении сопротивления резисторов, выполненных из проводников или полупроводников, при их механической деформации.
Характеристикой тензоэффекта материала является коэффициент относительной тензочувствительности
,
(3.5)
где
- относительное изменение сопротивления
резистора;
- относительное изменение линейного
размера резистора.
В настоящее время наиболее широко используются наклеиваемые тензопреобразователи (рис.13).
Рисунок 13. Тензочувствительный преобразователь
Преобразователь представляет собой тонкую зигзагообразно уложенную и приклеенную к полоске бумаги (подложке 1) проволоку 2 (проволочную решетку). Преобразователь включается в схему с помощью привариваемых или припаиваемых выводов 3. Преобразователь наклеивается на поверхность исследуемой детали так, чтобы направление ожидаемой деформации совпадало с продольной осью решетки.
Для
изготовления преобразователей применяется
главным образом проволока диаметром
0,02—0,05 мм из константана, имеющего
коэффициент
.
Применяются также фольговые и пленочные
тензорезисторы, габаритные размеры
которых меньше габаритных размеров
проволочных тензорезисторов.
Изменение температуры вызывает изменение функции преобразования тензорезисторов, что объясняется температурной зависимостью сопротивления преобразователя и различием температурных коэффициентов линейного расширения материала тензорезистора и исследуемой детали. Влияние температуры устраняется обычно путем применения соответствующих методов температурной компенсации.
Для измерения выходной величины тензорезисторного преобразователя чаще всего применяют мостовые схемы. Тензорезисторы всех типов находят широкое применение для измерения деформаций, усилий, давлений, моментов и т. п.
Широкое распространение на практике получили более дешевые медные терморезисторы, имеющие линейную зависимость сопротивления от температуры:
,
при
,
(3.6)
где
Недостатком
меди является небольшое ее удельное
сопротивление и легкая окисляемость
при высоких температурах, вследствие
чего конечный предел применения медных
термометров сопротивления ограничивается
температурой 180
.
По стабильности и воспроизводимости
характеристик медные терморезисторы
уступают платиновым.
Стандартные
платиновые термометры сопротивления
имеют обозначение ТСП, а медные ТСМ.
При температуре 0
сопротивления
термометров равно: платиновых 1; 5; 1О;
50; 100; 500 Ом, медных 10,
50, 100 Ом.
По
сравнению с металлическими тензорезисторами
более высокой чувствительностью обладают
полупроводниковые терморезисторы
(термитсоры). Они имеют отрицательный
температурный коэффициент сопротивления,
значение которого при 20
составляет
,
т. е. на порядок больше, чем у меди и
платины. Полупроводниковые терморезисторы
при весьма малых размерах имеют высокие
значения сопротивления (до 1МОм).
Для измерения температуры наиболее распространены полупроводниковые терморезисторы типов КМТ (смесь окислов кобальта и марганца) и ММТ (смесь окислов меди и марганца).
Термисторы имеют нелинейную функцию преобразования, которая достаточно хорошо описывается формулой
,
(3.7)
где
- абсолютная температура;
- коэффициент, имеющий размерность
сопротивления;
- коэффициент, имеющий размерность
температуры.
Кроме нелинейности функции преобразования, недостатком термисторов является плохая воспроизводимость характеристик, т.е. значительное отличие характеристик одного экземпляра от другого.
Структура диагностического обеспечения систем транспортной техники
Разработка диагностического обеспечения объекта основывается на совокупности правил и методов исследования данного объекта диагностирования. Конечным результатом разработки диагностического обеспечения объекта является информация, необходимая для проектирования систем технического диагностирования (СТД) и приспособление объекта к выполнению диагностических операций. Из диагностического обеспечения отдельных систем транспортного средства складывается диагностическое обеспечение транспортного средства в целом.
Диагностическое обеспечение объекта включает в себя перечень диагностических параметров, методы их оценки, условия работоспособности и признаки наличия дефектов в объекте, алгоритмы и программу диагностирования, показатели контролепригодности объекта и эффективности процесса диагностирования.
Процесс разработки диагностического обеспечения объекта состоит из следующих последовательно выполняемых операций:
выбор вида и построение диагностической модели объекта;
определения множества диагностических параметров;
выбор совокупности оцениваемых диагностических параметров;
выбор метода оценки диагностических параметров;
формулировка условий работоспособности и признаков дефектов в совокупности оцениваемых диагностических параметров;
построение алгоритмов и программы диагностирования.
Рассмотрим кратко содержание основных операций разработки диагностического обеспечения систем транспортного средства.
Диагностическое обеспечение объекта базируется на результатах построения и анализа одной или нескольких диагностических моделей (ДМ) объекта. Диагностическая модель объекта – формальное его описание, учитывающее возможность изменения состояния, – должна отвечать следующим основным требованиям:
быть обобщенной и в значительной мере абстрактной, чтобы ее можно было применять для широкого состава технических объектов;
охватывать возможно большее число состояний объекта, и позволять определять дефекты при любой заданной глубине поиска;
иметь форму, удобную для технической реализации, в частности для автоматизации процесса ее анализа с помощью ЭВМ.
Первое и второе требования к ДМ носят противоречивый характер, первое требование должно быть отнесено к определенному классу ДМ, второе – к определенному виду ДМ конкретного объекта.
В зависимости от уровня декомпозиции структуры и свойств транспортного средства как объекта диагностирования выбор, построение и анализ ДМ могут быть выполнены на двух уровнях.
На системном уровне в основу построения ДМ положено деление сложной структуры транспортного средства на отдельные системы различного уровня соподчинения. Модель транспортного средства отображает соподчиненность ДМ отдельных его систем. Целью анализа такой ДМ может быть качественная и количественная оценка влияния параметров отдельных систем на обобщенные тягово-экономические показатели транспортного средства.
Использование ДМ транспортного средства в целом для решения задач технической диагностики затруднено ввиду ее чрезвычайной сложности. Для практических целей строятся ДМ отдельных систем или, чаще всего, их подсистем. На таких моделях могут быть решены задачи оценки работоспособности систем, проверки их исправности и поиска дефектов, а также прогнозирование изменения состояния.
На элементном уровне ДМ отображает множество элементов и связей между ними. Под элементами понимают простейшие конструктивно или функционально законченные части системы, далее неделимые в рамках данного анализа. На основе таких моделей решают задачи проверки работоспособности, правильности функционирования и поиска дефектов.
Выбор вида и числа ДМ объекта зависит от целевого назначения модели, конструктивных особенностей объекта, степени его изученности и ряда других факторов. Большое разнообразие таких форм и средств описания объектов затрудняет исчерпывающую классификацию ДМ.
Диагностические модели ОД, представленные аналитической зависимостью, или, так называемые, аналитические модели представляют собой различные функциональные уравнения, описывающие процесс преобразования входных величин в выходные. В общем этот процесс может быть описан зависимостью:
(3.8)
где x, z – соответственно входная и выходная величины;
А – оператор преобразования.
Практически оператор А является функцией множества внутренних параметров объекта (чаще всего структурных), т.е. А=f(a1, a2, …, an). Возникновение дефекта приводит к изменению параметра Δа, что сопровождается изменением оператора ΔА и выходной величины Δz. Следовательно, при определенном х по изменению выходной величины z можно обнаружить возникший дефект.
Аналитические модели в диагностировании транспортных средств применяются на различных уровнях исследования и оценки их технического состояния.
Диагностические модели в виде дифференциальных уравнений применительно к отдельным звеньям или системам дают возможность решить ряд задач: оценить влияние изменения параметров звена или системы на показатели качества ее работы в установившиеся определить предельные значения параметров, установить законы и характеристики распределения отклонений параметров и т.д. Анализ таких моделей, особенно применительно к сложным системам (дизель-генератор, системы автоматического регулирования частоты вращения дизеля и напряжения тягового генератора и др.), производится обычно с помощью ЭВМ.
Диагностические модели в виде регрессивных зависимостей строятся на основе результатов специально поставленного статистического эксперимента. Полученная регрессивная зависимость обобщенного показателя качества работы системы или транспортного средства в целом от ряда диагностических параметров позволяет решить задачи диагностики и управления техническим состоянием транспортного средства.
Модели характеристик (статических и динамических) используются для проверки работоспособности и поиска дефектов в системах автоматического регулирования, электронных блоках, а также механических систем (частотные характеристик).
Из функциональных ДМ объектов, имеющих блочно-функциональную структуру, наиболее широко используются логические модели. Применение таких моделей для диагностирования транспортных средств возможно на разных уровнях их декомпозиции. Логические модели дают возможность решать практически все задачи диагностирования как незамкнутых, так и замкнутых систем, имеющих блочно-функциональную структуру, например, таких, как системы дистанционного управления энергетической установки, автотормозами, автоматического регулирования. Можно также и сборочные единицы (дизель, электропередачу) представить логическими моделями, но в этом случае поиск дефектов может быть выполнен до уровня отдельных узлов и систем.
Для построения логической модели системы должна быть задана ее функциональная схема, каждому блоку которой ставится в соответствие совокупность логических блоков таким образом, чтобы выходной сигнал каждого логического блока характеризовался только одним параметром. Оценку технического состояния объекта производят на основе допускового метода контроля. В этом случае если значение входа (выхода) каждого блока принадлежит множеству допустимых значений, оно принимается равным «1», если нет – равным «0», т.е. функции выходов от входа и состояния блока являются логическими функциями. При этом, назначив эксплуатационные допуски на параметры, нетрудно перейти к двузначной логической модели, представленной в виде таблицы функций неисправностей (ТФН).
При диагностировании замкнутых систем управления и регулирования, имеющих в своей структуре обратные связи, технология применения логических моделей усложняется. В этом случае в схему системы регулирования вводятся управляемые разрывы обратных связей, если такие разрывы допустимы в процессе диагностирования.
Логические модели отличаются простотой и наглядностью построения, а главное, минимумом исходной информации.
Диагностические модели объектов, представленные графами в пространстве параметров и состояний, дают возможность учитывать топологические особенности структуры объектов и связи их с внешней средой. Методы их построения отличаются алгоритмами, сравнительно легко реализуемыми на ЭВМ. При построении граф-моделей ОД, имеющих не блочную структуру, необходимо учитывать ряд характерных особенностей:
при тесной функциональной связи параметров ОД нельзя применять управляемые разрывы для исключения контуров обратных связей;
в число вершин графа дополнительно включают дефекты, которые, как правило, характеризуют качественное изменение свойств ОД, но не являются параметрами контроля;
структура графа и направление потока информации в нем изменяются в зависимости от вида решаемых задач (проверка работоспособности, поиск дефектов).
Графовые модели могут быть детерминированными и вероятностными.
Основной задачей анализа ДМ является определение множества диагностических параметров, отображающих изменение технического состояния объекта диагностирования. Из этого множества параметров формируют совокупность оцениваемых диагностических параметров, характеризующих техническое состояние ОД с определенной мерой достоверности. Выбранные параметры предопределяют содержание последующих этапов диагностического обеспечения.
Выбор метода оценки диагностических параметров зависит от точности и возможности их измерения, требуемой степени автоматизации диагностирования. На этом этапе должны быть четко сформулированы требования к техническим средствам.
Определение нормативных значений параметров технического состояния сочетается с формулировкой признаков наличия дефектов, включающих в себя условия различения работоспособных и неработоспособных состояний объекта.
В результате анализа ДМ объекта разрабатываются алгоритмы и программа диагностирования, эффективность которых может быть оценена одним критерием или сочетанием нескольких: стоимость, время, объем оборудования, квалификация обслуживающего персонала. К обобщенным параметрам эффективности диагностирования можно отнести показатели контролепригодности транспортных средств, определяемые на завершающем этапе разработки диагностического обеспечения.
При разработке диагностического обеспечения транспортного средства в процессе его проектирования стремятся добиться наибольшей эффективности системы диагностирования. Если же система диагностирования проектируется для существующего парка транспортных средств, то при разработке диагностического обеспечения должны быть учтены особенности каждого вида транспортного средства и различные варианты технического исполнения отдельных систем. Практически диагностическое обеспечение разрабатывается применительно к каждой системе транспортного средства с учетом конструктивных особенностей, условий эксплуатации и ремонта.
