- •Лекция №3 «Cистемы технической диагностики и мониторинга устройств транспортной техники
- •Прогнозирование случайных процессов
- •Выбор прогнозирующих параметров
- •Лекция №12 «Область применения датчиков на железнодорожном транспорте» Преобразование измеряемой величины в процессе измерений
- •1) Емкостные датчики
- •Лекция №13 «Индуктивные датчики. Датчики пути и скорости»
- •Датчики пути и скорости
- •Датчики контроля проследования поезда
- •Лекция №14 «Потенциометрические, оптические датчики. Термоэлектрические и гальванические преобразователи»
- •Гальванический преобразователь
- •Термоэлектрические преобразователи
- •Оптические датчики
- •Лекция №15 «Пьезоэлектрические и тензочувствительные преобразователи»
- •Тензочувствительные преобразователи (тензорезисторы)
- •3.5 Заключение
- •4. Системы обнаружения перегретых букс на ходу поезда
- •4.1. Назначение и принцип работы аппаратуры
- •4.2 Напольное оборудование аппаратуры обнаружения перегретых букс
- •4.3 Комплекс технических средств ктсм
- •4.4. Требования к размещению оборудования средств контроля аварийных букс
- •4.5 Заключение
- •5. Принцип действия и основные параметры точечных путевых датчиков счета осей
- •5.1 Магнитный точечный датчик прохода колес
- •5.2 Вибродатчики, используемые в подсистеме диск-к
- •5.3 Индуктивные датчики в системе счета осей
- •5.4 Многофункциональные датчики
- •5.5 Индукционные электромагнитные путевые датчики
- •5.6 Путевой датчик системы укп со
- •5.7 Заключение
- •6. Системы технического контроля и диагностики подвижного состава
- •6.1 Диагностика технического состояния грузового поезда
- •6.2 Классификация диагностических систем контроля параметров грузовых вагонов
- •6.2.1 Комплекс технических средств многофункциональный
- •6.2.2 Система комплексного контроля технического состояния подвижного состава на ходу поезда диск-2
- •6.2.3 Автоматизированный бесконтактный комплекс контроля колесных пар подвижного состава
- •6.2.4 Система автоматизированного контроля механизма автосцепки «сакма»
- •6.2.5 Автоматизированная система контроля открытых, незафиксированных и деформированных люков и дверей вагонов
- •6.2.6 Детектор дефектных колес ддк
- •6.2.7 Автоматизированный диагностический комплекс для измерения колесных пар вагонов на подходах к станции
- •6.2.8 Устройство контроля сползания буксы с шейки оси
- •6.2.9 Устройство контроля тормозов поезда уктп
- •6.2.10 Комплексная информационно-измерительная система технического диагностирования подвижного состава
- •6.3 Автоматизированная система контроля подвижного состава
- •6.4 Функции информационно-управляющего комплекса асу спто
- •6.5 Информационное взаимодействие асу спто с системами технической диагностики технического состояния вагонов
- •6.6 Заключение
- •7. Системы автоматической локомотивной сигнализации
- •7.1 Назначение и принцип действия алс
- •Путевые устройства алс
- •7.3 Локомотивные устройства алс
- •7.4 Система автоматического управления торможением поездов
- •7.5 Комплексное локомотивное устройство безопасности
- •7.6 Заключение
- •8. Нормативные значения диагностических параметров
- •8.1 Контролепригодность транспортной техники
- •9. Роль и место методов неразрушающего контроля для обеспечения надёжности и долговечности сложных систем с высокой ценой отказа
- •9.1 Проблемы выявления дефектов и характеристики методов нк
- •9.2 Эффективность комплексного применения методов нк
- •10. Магнитное поле. Основы феррозондового контроля
- •10.1 Силовые линии магнитного поля
- •10.2 Магнитные величины
- •10.3 Кривая намагничивания и петля гистерезиса
- •10.4 Магнитное поле рассеяния дефектов
- •10.5 Обнаружение дефектов
- •10.6 Феррозондовый метод
- •11. Намагничивание детаей
- •11.1 Приборы феррозондового контроля
- •11.2 Феррозондовые преобразователи
- •11.3 Приборы феррозондового контроля
- •12. Технология феррозондового контроля
- •12.1 Подготовка оборудования
- •12.1.1 Подготовка намагничивающих устройств и систем
- •12.1.2 Подготовка дефектоскопа и отраслевого стандартного образца
- •12.2 Подготовка деталей к контролю
- •12.3 Сканирование и обнаружение дефектов
- •12.4 Контроль боковой рамы
- •12.5 Контроль надрессорной балки
- •12.6 Контроль деталей автосцепного устройства
- •12.6.1 Контроль корпуса автосцепки
- •12.6.2 Контроль тягового хомута автосцепного устройства
- •12.7 Контроль дисков колес
- •13. Условные уровни чувствительности феррозондового метода
- •13.1 Намагничивающие устройства и системы
- •13.1.1 Электромагнитные устройства
- •13.1.2 Приставные устройства с постоянными магнитами
- •13.2 Феррозондовые приборы
- •13.2.1 Феррозондовые преобразователи
- •13.2.2 Феррозондовые дефектоскопы-градиентометры
- •13.2.3 Дефектоскоп-градиентометр дф-103
- •13.2.4 Дефектоскоп-градиентометр дф‑105
- •13.2.5 Дефектоскоп-градиентометр феррозондовый дф‑201.1
- •13.2.6 Магнитоизмерительные феррозондовые комбинированные приборы ф‑205
- •13.2.7 Магнитоизмерительный феррозондовый комбинированный прибор ф‑205.03
- •13.3 Феррозондовые измерители градиента и напряженности магнитного поля
- •13.3.1 Измеритель напряженности магнитного поля мф‑107
- •13.3.2 Измеритель напряженности магнитного поля мф‑109
- •13.3.3 Измеритель градиента напряженности магнитного поля гф‑105
- •13.4 Стандартные образцы
- •13.5 Состав и назначение дефектоскопных установок
13.3 Феррозондовые измерители градиента и напряженности магнитного поля
Для проверки работоспособности намагничивающих устройств и систем необходимо периодически контролировать уровень намагниченности детали. Для этой цели служат измерители напряженности магнитного поля.
13.3.1 Измеритель напряженности магнитного поля мф‑107
Типичным представителем семейства измерителей поля является прибор МФ‑107 (рисунок 86).
Рисунок 86 Внешний вид измерителя МФ‑107
1 — кнопка включения питания; 2 — индикатор включения питания; 3 — разъем для подключения ФП; 4 — аккумуляторная батарея; 5 — индикатор разряда батареи; 6 — звуковой индикатор; 7 — дисплей; 8 — индикаторы режимов измерения нормальной (Hn) или тангенциальной (H составляющих поля; 9 — кнопка переключения режимов измерения; 10 — индикатор включения второго диапазона; 11 — кнопка переключения диапазонов измерения; 12 — феррозондовый преобразователь
Технические характеристики измерителя МФ‑107 представлены в таблице 13.8.
МФ‑107 имеет ФП для измерения как нормальной (Hn), так и тангенциальной (H) составляющих напряженности магнитного поля.
Таблица 13.8
Продолжительность непрерывной работы измерителя от аккумуляторной батареи, емкостью 0,55 А/ч, входящей в комплект поставки, ч, не менее8Габаритные размеры в чехле, мм, не более125 182 66Масса, кг, не более 0,95Наименование характеристики
ЗначениеДиапазоны показаний HилиHn, А/м |
±(0—199,9) и ±(0—1 999) |
|
Диапазоны
измерений HилиHn, А/м±(40—180)
и ±(160—1 800)Пределы допускаемой
основной относительной погрешности
Д
измерения напряженности магнитного
поля, % (Hk — конечное
значение поддиапазона измерений, H
— измеренное значение напряженности
магнитного поля) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13.3.2 Измеритель напряженности магнитного поля мф‑109
1 — кнопка включения питания; 2 — индикатор включения питания; 3 — индикатор разряда батареи; 4 — дисплей; 5 — индикатор полярности поля; 6 — индикатор режима измерения нормальной составляющей поля Hn; 7 — индикатор режима измерения тангенциальной составляющей поля Hτ; 8 — кнопка переключения режимов измерений; 9 — гнездо соединителя для подключения ФП; 10 — звуковой индикатор.
Рисунок 87 Внешний вид измерителя МФ‑109
Технические характеристики измерителя МФ‑109 представлены в таблице 13.9.
Таблица В.9
ХарактеристикаЗначениеДиапазон показаний HилиHn, А/м |
(0—19 999) |
|
Масса, кг, не более1,25Продолжительность непрерывной работы измерителя от аккумуляторной батареи, емкостью 0,55 А/ ч, входящей в комплект поставки, ч, не менееДиапазон измерений HилиHn, А/м (40—19 000)Пределы допускаемой основной относительной погрешности Д измерения напряженности магнитного поля, % (Hk — конечное значение диапазона измерений, H — измеренное значение напряженности магнитного поля)
в комплект поставки, ч, не менее Аккумуляторной батареи, емкостью 0,55 А/ ч, входящей в комплекНоминальная емкость аккумуляторной батареи, Ач, не менее
|
8 |
|
Габаритные размеры в чехле, мм, не более145196 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Измеритель МФ‑109 состоит из электронного блока, двух феррозондовых преобразователей (ФП), подсоединяемых к нему с помощью соединителей, и аккумуляторной батареи.
Внешний вид ФП показан на рисунке 88.
ФП МПФ 205 преобразует в электрический сигнал проекцию Hx вектора напряженности магнитного поля на продольную ось преобразователя.
ФП МПФ 206 преобразует в электрический сигнал проекцию Hz вектора напряженности магнитного поля на нормальную ось преобразователя.
Рисунок 88 Феррозондовый преобразователь
а) ФП МПФ 205; б) ФП МПФ 206
ФП измеряет абсолютное значение вектора напряженности магнитного поля, если направление силовых линий поля совпадает с нормальной осью преобразователя для МПФ 206 и с продольной — для МПФ 205.
При установке ФП МПФ 205 основанием на поверхность объекта измеряется проекция поля на ось x (продольную ось ФП). Для измерения тангенциальной составляющей поля H необходимо повернуть ФП вокруг оси z до получения максимальных показаний.
При установке ФП МПФ 206 основанием на поверхность объекта измеряется нормальная Hn по отношению к поверхности объекта составляющая поля.
