- •Лекция №3 «Cистемы технической диагностики и мониторинга устройств транспортной техники
- •Прогнозирование случайных процессов
- •Выбор прогнозирующих параметров
- •Лекция №12 «Область применения датчиков на железнодорожном транспорте» Преобразование измеряемой величины в процессе измерений
- •1) Емкостные датчики
- •Лекция №13 «Индуктивные датчики. Датчики пути и скорости»
- •Датчики пути и скорости
- •Датчики контроля проследования поезда
- •Лекция №14 «Потенциометрические, оптические датчики. Термоэлектрические и гальванические преобразователи»
- •Гальванический преобразователь
- •Термоэлектрические преобразователи
- •Оптические датчики
- •Лекция №15 «Пьезоэлектрические и тензочувствительные преобразователи»
- •Тензочувствительные преобразователи (тензорезисторы)
- •3.5 Заключение
- •4. Системы обнаружения перегретых букс на ходу поезда
- •4.1. Назначение и принцип работы аппаратуры
- •4.2 Напольное оборудование аппаратуры обнаружения перегретых букс
- •4.3 Комплекс технических средств ктсм
- •4.4. Требования к размещению оборудования средств контроля аварийных букс
- •4.5 Заключение
- •5. Принцип действия и основные параметры точечных путевых датчиков счета осей
- •5.1 Магнитный точечный датчик прохода колес
- •5.2 Вибродатчики, используемые в подсистеме диск-к
- •5.3 Индуктивные датчики в системе счета осей
- •5.4 Многофункциональные датчики
- •5.5 Индукционные электромагнитные путевые датчики
- •5.6 Путевой датчик системы укп со
- •5.7 Заключение
- •6. Системы технического контроля и диагностики подвижного состава
- •6.1 Диагностика технического состояния грузового поезда
- •6.2 Классификация диагностических систем контроля параметров грузовых вагонов
- •6.2.1 Комплекс технических средств многофункциональный
- •6.2.2 Система комплексного контроля технического состояния подвижного состава на ходу поезда диск-2
- •6.2.3 Автоматизированный бесконтактный комплекс контроля колесных пар подвижного состава
- •6.2.4 Система автоматизированного контроля механизма автосцепки «сакма»
- •6.2.5 Автоматизированная система контроля открытых, незафиксированных и деформированных люков и дверей вагонов
- •6.2.6 Детектор дефектных колес ддк
- •6.2.7 Автоматизированный диагностический комплекс для измерения колесных пар вагонов на подходах к станции
- •6.2.8 Устройство контроля сползания буксы с шейки оси
- •6.2.9 Устройство контроля тормозов поезда уктп
- •6.2.10 Комплексная информационно-измерительная система технического диагностирования подвижного состава
- •6.3 Автоматизированная система контроля подвижного состава
- •6.4 Функции информационно-управляющего комплекса асу спто
- •6.5 Информационное взаимодействие асу спто с системами технической диагностики технического состояния вагонов
- •6.6 Заключение
- •7. Системы автоматической локомотивной сигнализации
- •7.1 Назначение и принцип действия алс
- •Путевые устройства алс
- •7.3 Локомотивные устройства алс
- •7.4 Система автоматического управления торможением поездов
- •7.5 Комплексное локомотивное устройство безопасности
- •7.6 Заключение
- •8. Нормативные значения диагностических параметров
- •8.1 Контролепригодность транспортной техники
- •9. Роль и место методов неразрушающего контроля для обеспечения надёжности и долговечности сложных систем с высокой ценой отказа
- •9.1 Проблемы выявления дефектов и характеристики методов нк
- •9.2 Эффективность комплексного применения методов нк
- •10. Магнитное поле. Основы феррозондового контроля
- •10.1 Силовые линии магнитного поля
- •10.2 Магнитные величины
- •10.3 Кривая намагничивания и петля гистерезиса
- •10.4 Магнитное поле рассеяния дефектов
- •10.5 Обнаружение дефектов
- •10.6 Феррозондовый метод
- •11. Намагничивание детаей
- •11.1 Приборы феррозондового контроля
- •11.2 Феррозондовые преобразователи
- •11.3 Приборы феррозондового контроля
- •12. Технология феррозондового контроля
- •12.1 Подготовка оборудования
- •12.1.1 Подготовка намагничивающих устройств и систем
- •12.1.2 Подготовка дефектоскопа и отраслевого стандартного образца
- •12.2 Подготовка деталей к контролю
- •12.3 Сканирование и обнаружение дефектов
- •12.4 Контроль боковой рамы
- •12.5 Контроль надрессорной балки
- •12.6 Контроль деталей автосцепного устройства
- •12.6.1 Контроль корпуса автосцепки
- •12.6.2 Контроль тягового хомута автосцепного устройства
- •12.7 Контроль дисков колес
- •13. Условные уровни чувствительности феррозондового метода
- •13.1 Намагничивающие устройства и системы
- •13.1.1 Электромагнитные устройства
- •13.1.2 Приставные устройства с постоянными магнитами
- •13.2 Феррозондовые приборы
- •13.2.1 Феррозондовые преобразователи
- •13.2.2 Феррозондовые дефектоскопы-градиентометры
- •13.2.3 Дефектоскоп-градиентометр дф-103
- •13.2.4 Дефектоскоп-градиентометр дф‑105
- •13.2.5 Дефектоскоп-градиентометр феррозондовый дф‑201.1
- •13.2.6 Магнитоизмерительные феррозондовые комбинированные приборы ф‑205
- •13.2.7 Магнитоизмерительный феррозондовый комбинированный прибор ф‑205.03
- •13.3 Феррозондовые измерители градиента и напряженности магнитного поля
- •13.3.1 Измеритель напряженности магнитного поля мф‑107
- •13.3.2 Измеритель напряженности магнитного поля мф‑109
- •13.3.3 Измеритель градиента напряженности магнитного поля гф‑105
- •13.4 Стандартные образцы
- •13.5 Состав и назначение дефектоскопных установок
7.5 Комплексное локомотивное устройство безопасности
Комплексное локомотивное устройство безопасности (КЛУБ) серийно внедряется на Российских железных дорогах с 1994 г. Оно выполнено на микропроцессорной базе (рис. 32) и имеет резервирование всех функциональных модулей. В состав устройства (рис. 33) входят следующие блоки:
блок электроники (БЭЛ), предназначенный для приема сигналов от приемных катушек (ПК) и датчиков пути и скорости (ДПС) и для обработки и выдачи информации;
локомотивный блок индикации (БИЛ), отображающий сигналы АЛС, параметры движения поезда по информации от блока БЭЛ, звуковую и световую индикацию и др.;
блок коммутации (БК), служащий для обработки сигналов от датчиков и подключения к БЭЛ периферийных устройств;
блок ввода и диагностики БВД, для тестирования аппаратуры перед поездкой с целью выявления скрытых повреждений.
КЛУБ обеспечивает:
прием информации из канала АЛСН;
измерение и индикацию фактической скорости движения;
формирование допустимой скорости движения и ее индикацию;
контроль скорости движения и торможение при превышении допустимой скорости;
Рисунок 32 Внешний вид аппаратуры КЛУБ
контроль торможения перед светофором с запрещающим сигналом;
контроль бдительности машиниста;
исключение самопроизвольного (несанкционированного) движения;
регистрация параметров движения в электронной памяти;
исключение несанкционированного выключение ЭПК;
учет категории поезда, типа тяги и длинны БУ;
информирование машиниста о показаниях светофоров, числе свободных БУ, фактической скорости с точностью до 1км/ч и допустимой скорости на данном участке, о текущем времени, координатах местоположения локомотива при помощи спутниковой навигации, соблюдении графика движения поездов и пр.
Клуб имеет модульную структуру, в которой равноправные независимые модули взаимодействуют друг с другом посредством системной шины. Языком программирования для КЛУБ выбран язык С. Программное обеспечение системы представляет собой совокупность независимых последовательному интерфейсу типа CAN.
Рисунок 33 Структурная схема аппаратуры КЛУБ
7.6 Заключение
Благодаря непрерывной передаче сигналов на локомотив, что является эксплуатационным признаком, локомотивная сигнализация облегчает условия труда машиниста и повышает безопасность движения поездов. Сигналы, будучи воспроизведенными, на локомотиве, легко и безошибочно воспринимаются и осознаются машинистом, что дает ему возможность уверенно вести поезд в любых условиях, даже при плохой видимости сигналов, подаваемых путевыми светофорами, что, несомненно, повышает безопасность движения.
Поскольку существующие системы получили полное, совместное с АБ распространение на всей сети железных дорог, в дальнейшем на участках с многозначной локомотивной сигнализацией будет иметь место действие одновременно и существующей системы (АЛСН, АЛС-ЕН), а также микропроцессорные системы (КЛУБ, САУТ, ТС КБМ). Локомотивы с многозначной сигнализацией в свою очередь, будучи оборудованными обеими системами, способны обращаться и на участках с локомотивной сигнализацией числового кода. Кроме того, на участках с многозначной локомотивной сигнализацией при прекращении приема частотных сигналов происходит автоматический переход на прием сигнала числового кода, что особенно важно для участков, где локомотивная сигнализация будет выполнять роль основного средства сигнализации и связи при движении поездов.
