Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_Lekts_Osnovy_geokhimi_rus.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
933.38 Кб
Скачать

3. Связь «Геохимии» с другими науками

Заслуживают особого внимания вопросы методологии геохимии для правильной оценки ее достижений, подходов для дальнейшего изучения вещества и преподавания предмета. Будучи наукой сложной, состоящей из ряда других обособившихся в ней наук, направлений или систем, геохимия сама является частью геологической системы знаний. Так, петрография - минералогия - геохимия - это цепь геологических наук, которая реально отражает существующее в природе единство: горная порода - минерал - атом.

Геохимия использует идеи философии диалектического материализ­ма. Как говорит Л.Н. Овчинников [49], «дифференциация вещества Земли - закономерное отражение движения и развития материи в диа­лектическом единстве пространства и времени. Эти всеобщие формы бытия материи особенно ясно обнаруживают свое единство в геологи­ческих процессах и в тех закономерностях, которые определяют обра­зование продуктов этих процессов».

Поскольку геохимия - наука комплексная, она использует весь арсенал методов сопредельных наук. Химические методы - химический анализ, полярография, фотоколориметрия, изме­рение рН и Eh, термография, деривато-термография, гомогения и дру­гие; физические методы - рентгеновский (рентгенофазовый, рентгено-структурный, рентгеноспектральный), спектральный, люминесцентный, радиометрический, изотопный, магнитометрический, микрозондовый анализы, электропарамагнитный резонанс, ИК-спектроскопия, оптиче­ская спектроскопия, ядерная гамма-резонансная спектроскопия, растро­вая электронная микроскопия [62, 43]; геологические методы — геологи­ческое картирование, палеонтологический, стратиграфический методы, микроструктурный анализ, шлиховой метод, оптическая петрография, минераграфия, литологический анализ пород, геофизический метод, стереометаллогенические исследования.

лекцІя №2

Походження і поширеність хімічних елементів у природі

1. Происхождение химических элементов

2. Особенности распределения химических элементов

1. Происхождение химических элементов

Наука геохимия должна ответить на ряд вопросов связанных с происхождением и распространением элементов в природе. В настоящее время известно следующее.

Во-первых, распространенность объясняется строением атомных ядер: широко распространены элементы с небольшим и четным числом протонов и нейтронов.

Во-вторых, устойчивость элементов определилась в период их обра­зования, когда вещество Земли «проходило» звездный путь развития. При очень высоких температурах (миллионы градусов) возможно суще­ствование вещества только в виде плазмы со свободными ядерными частицами (р и п). Ядерные реакции приводили к образованию эле­ментов наиболее устойчивых, т.е. состоящих из четного числа протонов и(или)нейтронов.

Небольшая (низкая) распространенность первых элементов таблицы Д.И. Менделеева, вероятно, тоже определилась в звездную стадию раз­вития Земли. По одной из теорий, формирование элементов взаимосвя­зано с эволюцией звезд, т.е. образование элементов происходило в оп­ределенных космических телах - массивных звездах. Исходным мате­риалом для образования всех элементов был водород - гипотеза естест­венного синтеза элементов (цикл Бете). Возможный процесс термо­ядерных реакций с участием Н, Не, N и С (азотно-углеродный цикл)

Ядра углерода и азота в этом цикле являются катализаторами. Энер­гия, выделяемая при этом процессе, вероятно, соответствует энер­гии, выделяемой звездами и, в том числе, Солнцем.

Далее в этот цикл включается гелий : образуются 016 и Ne20; далее при более высоких температурах с участием α –частиц α-процесс») из ядер Ne20 последовательно образуются Mg24 – Si28 – S32 – Cl36 – Ca40 – Sc44 – Ti48 .

Такие термоядерные реакции вероятны на «белых карликах».

После «α-процесса» вновь сжимается ядро звезды, температура рас­тет, возникают термоядерные реакции в обстановке статического равно­весия. Образуются ядра, группирующиеся вокруг Fe56 - железный мак­симум - V50 — Сг52 — Мn54—Fe56- Со56 — Ni58. Это «е-процесс», при котором постоянно происходит как удаление частиц от ядер, так и их добавление.

Синтез элементов с массовым числом свыше 60 требует очень высоких температур, невозможных в условиях звезды. Более тяжелые элементы формируются иначе: путем простой бомбардировки нейтронами, которые легко захватываются ядрами. Бомбардировка медленными нейтронами -«s-процесс» - захват медленных (slow) нейтронов. Образование элемен­тов таким путем (s-процессом) может быть только до Bi209.

Более тяжелые элементы, следующие за Bi209, нестабильные и их син­тез возможен только при бомбардировке ядер быстрыми нейтронами -«r-процесс». Образуются элементы U, Th, Np, Pu і до Lr.

Следующий возможный «р-процесс», действие которого состоит в добавлении протонов: в ре­зультате цепной реакции с захватом нейтронов (при взрыве сверхновых) образуются редкие тяжелые изотопы.

И, наконец, «х-процесс» - образуются ядра дейтерия (Н2) Li, Be, В.

Отмечается, что процессы генерации нейтронов происходят в звез­дах типа красных гигантов.

В целом для звезд характерно электронно-ядерное состояние веще­ства, однако теоретически возможно и нейтронное состояние с ядерной плотностью вещества (пульсары). При гигантских температурах воз­можно всеобщее превращение элементарных частиц друг в друга.

На Солнце и звездах идет в основном синтез элементов, на планетах (и на Земле) - преимущественно распад. Между отдельными частями космоса идет непрерывный обмен атомами и, следовательно, энергией. Несмотря на непрерывное перераспределение атомов между отдельны­ми частями Мироздания, в целом, количественные соотношения эле­ментов остаются в каждом отдельном участке (Земля, геосферы и др.) сопоставимыми.

Кларки элементов не являются геологически постоянными: главные особенности (т.е. среднее содержание химических элементов в земной коре горных породах, в океане) не изменились, однако кларки отдель­ных элементов все же меняются. Так, при радиоактивном распаде меня­ется со временем количество радиоактивных (U, Th и др.) и радиоген­ных (РЬ, Аг и др.) элементов в земной коре. В атмосфере под действием космических лучей происходит образование элементов (13С, 3Н, 14С и других радиоактивных изотопов). Некоторые элементы (Fe, Mg, S и др.) поступают на Землю в составе метеоритов, особенно существенно в ранние геологические периоды жизни Земли. Но космос также частично и забирает некоторые элементы Н, Ne, Не, которые улетучиваются (диссипируют) в межпланетное пространство.

Таким образом, за несколько миллиардов лет истории Земли менялся химический состав отдельных геосфер и, как отметил В.И. Вернадский, «земная кора два миллиарда лет назад и в современную эпоху - это химически разные тела». Об этом говорит и соотношение между гор­ными породами: на ранних этапах становления Земли господствующая роль принадлежала эффузивным породам, преимущественно основного состава, но в настоящее время преобладают осадочные породы на по­верхности материков, меньшую роль играют гранитоиды и совсем мало основных эффузивов.

Гениальную мысль высказал В.И. Вернадский о рассеянии, о «всюдности» элементов: все элементы есть везде, всюду; в каждой песчинке или капле, как в микрокосме отражается общий состав космоса. Такое представление о всеобщем рассеянии химических элементов Н.И. Сафронов предложил назвать законом Кларка - Вернадского.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]