- •Міністерство освіти і науки україни
- •Конспект лекцій
- •Донецьк ДонНту – 2013
- •Вступ до курсу. Історія виникнення науки «Геохімія». Головні поняття геохімії
- •Введение в курс
- •2. Наука «Геохимия», история формирования и основные понятия
- •I этап – эмпирический
- •II этап – аналитический (физико-химический)
- •III этап – кристаллохимический
- •IV этап – геоэнергетический
- •3. Связь «Геохимии» с другими науками
- •Походження і поширеність хімічних елементів у природі
- •1. Происхождение химических элементов
- •2. Особенности распределения химических элементов
- •(По а.А. Саукову)
- •Основи кристалохіміі. Енергія кристалічної решітки, методи її розрахунку
- •1. Состав и строение атомов
- •2. Строение вещества и типы химических связей
- •3. Атомные и ионные радиусы, закономерности их изменения. Координационное число. Явление поляризации.
- •4. Энергия кристаллической решетки. Методы ее определения
- •Ізоморфізм мінералів, його види і прояви, практичне значення
- •1. Понятие изоморфизма, виды изоморфизма
- •2. Условия проявления изоморфизма
- •3. Практическое значение изоморфизма
- •1. Понятие изоморфизма, виды изоморфизма
- •2. Условия проявления изоморфизма
- •3. Практическое значение изоморфизма
- •Земля як геохімічна система. Будова і склад Землі та інших планет.
- •1. Оболочки Земли и их состав. Состав планет солнечной системы
- •2. Строение и состав земной коры
- •1. Оболочки Земли и их состав. Состав планет солнечной системы
- •2. Строение и состав земной коры
- •3. Состав гидросферы и атмосферы Земли
- •Геохімічні класифікації хімічних елементів, їх практичне значення
- •1. Основа геохимических классификаций элементов. Геохимическая классификация элементов Гольдшмидта.
- •2. Геохимические классификации элементов Вернадского и Заварицкого.
- •3. Геохимические классификации элементов Ферсмана и Перельмана.
- •1. Основа геохимических классификаций элементов. Геохимическая классификация элементов Гольдшмидта.
- •2. Геохимические классификации элементов Вернадского и Заварицкого.
- •3. Геохимические классификации элементов Ферсмана и Перельмана.
- •Геохімічна спеціалізація геологічних утворень
- •1. Загальні положення.
- •2. Цільове призначення карт геохімічної спеціалізації
- •1. Загальні положення
- •2. Цільове призначення карт геохімічної спеціалізації
- •Міграція хімічних елементів, внутрішні чиники міграції
- •Понятие миграции
- •Виды и типы миграции химических элементов
- •Факторы миграции, внутренние факторы
- •1. Понятие миграции
- •2. Виды и типы миграции химических элементов
- •3. Факторы миграции, внутренние факторы
- •Міграція хімічних елементів, зовнішні чиники міграції
- •1. Внешние факторы миграции
- •2. Законы и правила, определяемые внешними факторами
- •3. Геохимические барьеры
- •1. Внешние факторы миграции
- •2. Законы и правила, определяемые внешними факторами
- •3. Геохимические барьеры.
- •1. Барьеры для веществ, перемещающихся в водных потоках.
- •2. Барьеры для веществ, перемещающихся в воздушных потоках.
- •Фракціонування елементів та ізотопів в природних процесах
- •1. Общие сведения об изотопах.
- •2. Распространение изотопов в природе и причины разделения изотопов в природе.
- •3. Изотопы углерода, их значение при решении геолого-геохимических задач
- •1. Общие сведения об изотопах
- •2. Распространение изотопов в природе и причины разделения изотопов в природе
- •3. Изотопы углерода, их значение при решении геолого-геохимических задач
- •Изотопный состав углерода пород и различных объектов Земли
- •Головні положення ізотопної геохімії. Практичне значення ізотопної геохімії
- •1. Изотопы кислорода и их практическое значение
- •2. Изотопы свинца и их практическое значение
- •3. Изотопы серы и их практическое значение
- •1. Изотопы кислорода и их практическое значение
- •2. Изотопы свинца и серы и их практическое значение.
- •3. Изотопы серы и их практическое значение
- •Халькопирит-пирит
- •Основи геохімії систем. Геохімія магматичних систем і процесів
- •1. Магма, ее дифференциация и кристаллизация.
- •Габбро (у/о и о магма)– Диоритовая (средняя) магма – Гранитная (кислая) магма– водные растворы
- •2. Основные черты геохимии ультраосновных и основных пород
- •3. Основные черты геохимии пегматитов.
- •Основи геохімії систем. Геохімія постмагматичних систем і процесів
- •Общие сведения о постмагматических процессах
- •2. Основные черты геохимии гидротермального процесса
- •Распределение элементов халькокристаллизации по Ферсману
- •Изменение химических свойств гидротермальных растворов
- •3. Практическое значение продуктов постмагматических процессов
- •Основи геохімії систем. Геохімія метаморфогенних систем і процесів
- •Факторы и виды метаморфизма
- •Минеральные фации метаморфических пород
- •Главные фации метаморфизма
- •Метаморфические фации по (из в.Ф. Барабанова)
- •Основные минералогогеохимические черты метаморфических процессов
- •Основи геохімії систем. Геохімія екзогенних систем і процесів
- •Понятие гипергенеза и его отличие от других процессов
- •2. Физико-химические, биогенные и механические процессы гипергенеза.
- •Выветривание различных типов горных пород
- •Зона окисления рудных (сульфидных) месторождений
- •Геохімія техногнезу і захист природного середовища
- •1. Геохимия техногенеза понятие «ноосфера»
- •2. Техногенная миграция элементов
- •3. Технофильность и другие показатели техногенеза.
- •Список рекомендованной Литературы
2. Основные черты геохимии ультраосновных и основных пород
На первой стадии эволюции единой базальтовой магмы образуются основные и ультраосновные породы. По Ферсману все элементы протокристаллизации можно разделить на 4 группы:
ведущие – Mg, Si, O, Ti, Fe, Ni, Cr
главные - C, Na, Al, P, S, (Cl), Ca, V, Mn, Co, Pt, Ru, Os, Ir и другие
второстепенные - (H), Sc, Cu, Zn, Ge, As, Pb, (Sb), (Hg), Te, Ag, Au
акцессорные - K, Sr, Zr, Nb, Ta, W, Re, (Sn), Mo
__- элементы с четными номерами
( ) – элементы, которые участвуют в процессе, но не находятся в минералах.
Т.о., в продуктах протокристаллизации накапливаются, в основном: 1.элементы с четными номерами (более 97%), имеющие устойчивые ядра и большие кларки; 2. в основном, литофилы и сидерофилы и элементы семейства железа, реже – группы платины; 3. преобладают 2 и 4-х валентные элементы с малыми ионными радиусами; 4. накапливаются ионы с высокими значениями ЭК и, соответственно, с высокими значениями энергии кристаллической решетки. С этим связана техническая ценность этих минералов:
- Высокая твердость – алмаз, хромит;
- Химическая стойкость – алмаз, асбест, корунд, платиноиды;
- Огнеупорность – корунд, хромит, графит.
При протокристаллизации широко развиты явления изоморфизма:
Изовалентный изоморфизм – магний замещается железом в оливине; железо марганцем – в авгитах; железо и магний замещается никелем и кобальтом в оливине. Характерны взаимные замещения элементов-платиноидов.
Гетеровалентный изоморфизм – скандий замещает магний в решетках силикатов; установлено присутствие тантала и ниобия в минералах титана; железа, меди, никеля – в самородной платине и т.д..
Образующиеся при высоких температурах твердые растворы в зонах гипергенеза неустойчивы и распадаются, происходит разделение изоморфных примесей. При выветривании магний-железистых ультраосновных пород происходит обособление железа в виде гидроксидов, магния - в виде карбонатов, никеля – в виде силикатов. В зоне гипергенеза происходит разделение никеля и кобальта, которые в условиях магматических процессов были тесно связаны
Для важнейших минералов протокристаллизации установлен следующий ряд по времени их образования:
оксиды титана и железа – оливин – пироксен – амфибол – слюды – полевые шпаты – группа хлоритов - тальк.
Образование минералов протокристаллизации в общих чертах идет в порядке постепенного уменьшения твердости (от 7-9 до 1), уменьшения плотности, выпадения катионов из расплава идет в сторону понижения ЭК, т.е. в направлении уменьшения валентностей и увеличения радиусов ионов.
3. Основные черты геохимии пегматитов.
Согласно Ферсмана А.Е., в результате дифференциации первичного магматического расплава могут образовываться различные частные магмы, в том числе и остаточная гранитная. Она будет отличаться от исходной магмы более высоким содержание кремнекислоты, щелочей, летучих компонентов и редких элементов. Из гранитной магмы выделяются летучие вещества, которые дают начало пневматолитовым и гидротермальным процессам, из нее выкристаллизовывается большая часть элементов в форме минералов- полевых шпатов, слюд, кварца и др., образующих граниты. Но остается еще флюидно-надкритический остаточный расплав, при кристаллизации которого образуются пегматитовые жилы.
Пегматит – жильное тело, в основном связанное с магматическим гранитным остатком, главная часть кристаллизации которого лежит в пределах 700-350оС. К характерным особенностям гранитных пегматитов относится письменная структура, которая получается при одновременной кристаллизации из расплава полевого шпата и кварца («еврейский камень»).
В настоящее время выделяют пегматиты:
1) слюдоносные. Они формируются на глубинах свыше 6 км и состоят из плагиоклаза, микроклина, кварца, мусковита, биотита, шерла, граната, апатита, берилла. Близкие по условиям образования пегматиты, состоящие, в основном, из полевых шпатов и кварца, называются керамическими.
2) редкометальные. Они образуются на глубинах 6-4 км от поверхности и состоят из микроклина (нередко амазонита), кварца, альбита, сподумена, мусковита, лепидолита, берилла, цветных и полихромных турмалинов, колумбита, танталита, касситерита, поллуцита, топаза и др.
3) хрусталеносные, образующиеся на глубинах 4-3 км. Они состоят из микроклина, альбита, кварца, мусковита, биотита, а в полостях-занорышах – из топаза, ювелирного золотистого берилла, оптического флюорита, аметиста и пьезооптического горного хрусталя.
Процесс кристаллизации пегматитов состоит из отдельных стадий, обусловленных резкими изменениями физико-химического равновесия в среде, богатой летучими соединениями, с частичным растворением ранее выделившихся компонентов.
По Ферсману выделяют следующие геофазы пегматитового процесса:
Геофаза В: 800-700оС – образуются контактовые зоны отделенных от вмещающих пород пегматитов, структура – аплитовая (мелкозернистая). Содержат гранат и магнетит.
Геофаза С: 700-600оС – образование письменных гранитов.
Геофазы D-Е: 600-500оС – пегматоидные образования (флюидно-газовые). Минералы характерные для пегматитовых жил– мусковит, берилл, топаз, дымчатый кварц, полевые шпаты, турмалин (шерл).
Геофазы F-G: 500-400оС – надкритическая зона (флюидно-гидротермальная). Образуются пневматолитовые минералы – рубеллит, зеленые слюды и др. с характерными замещениями ранее образовавшихся минералов.
Геофазы H-K: 400-50оС – гидротермальный процесс. Характерны вначале зеленые слюды, потом сульфиды, под конец - карбонаты, цеолиты.
Геофаза L: 50-0оС – гипергенная. Образование глинистых вторичных минералов – вторичный кальцит, халцедон, вторичный кварц.
Власов К.А. показал, что процесс образования сложных пегматитов, содержащих редкометальные минералы, удобно разделить на 4 стадии и выделить 4 типа пегматитов
Классификация Власова (для пегматитов, содержащих редкометальные минералы)
1. Мелкозернистые (аплитовые) пегматиты – характеризуют начало пегматитового процесса, когда полевые шпаты и кварц кристаллизуются почти одновременно, образуя письменные структуры («еврейский камень»), а также равномернозернистые выделения, без каких-либо явлений замещения. Эти пегматиты характерны для маломощных жил, где при малом количестве летучих соединений быстрее падает температура и быстрее идет кристаллизация. Этот тип располагаются в самых низких частях крутых жил, поскольку летучие соединения поднимаются выше, где и дают пегматиты следующих типов.
2. Крупнозернистые полевошпатовые (блоковые) пегматиты – из остаточного расплава-раствора кристаллизуются крупные полевые шпаты, а также происходит начало обособления и концентрации редких элементов. В этих пегматитах развиты процессы замещения, которые выражаются в замещении КПШ мусковитом и альбитом. Залегают выше первого типа.
3. Полнодифференцированный пегматит – минералы в нем размещаются более или менее четкими полосами, этот тип залегает еще выше, где концентрация летучих соединений (в том числе редких элементов) еще значительней и застывание происходит медленнее. Характерно наличие крупных блоков кварца наряду со сплошными зонами полевых шпатов. Кристаллизуются минералы, содержащие редкие земли: берилл, сподумен.
4. Редкометальнозамещенный пегматит – характеризуется широким развитием явлений замещения, в результате которых возникает самостоятельная зона, сложенная пластинчатым альбитом (клевеландитом), мусковитом и поздним кварцем. Характерно повышенное содержание летучих веществ, которые разъедают и замещают ранее выделившиеся минералы и высокое содержание редкометальных минералов. Находятся в самой верхней части, т.е. в местах наибольшей концентрации летучих веществ и имеют наибольшее практическое значение.
Гранитные пегматиты значительно богаче элементами, чем продукты протокристаллизации, особенно литием, бором, галлием, рубидием, танталом, ниобием и др. Все элементы гранитных пегматитов делятся на:
1. Ведущие элементы – Li, Be, O, Si, Al, Na, K, Rb, Cs, TR
2. Главные - B, F, P, Sc, Sn
3.Нормальные - He, Ce, Ca, Ti, Mn, Ga, Ce, Y, Zr, Nb
4.Случайные – N, C, Mg, S, V, Cr, Fe, Cu, Zn
5. Запрещенные – Ne, Ar, Co, Ni, As, Ag, Cd, Pt, Hg
Подчеркнуты элементы с четными номерами.
Геохимические особенности пегматитов:
1. В гранитных пегматитах накапливаются, преимущественно, нечетные элементы. В этом – самое главное отличие конечной кристаллизации от протокристаллизации и главной кристаллизации.
2. В пегматитах накапливаются элементы с малыми ЭК – цезий, рубидий, натрий, калий.
3. В пегматитах накапливаются радиоактивные элементы – торий, уран, радий, олово, калий, рубидий.
4. В пегматитах накапливаются наименее устойчивые элементы с легко разлагающимися ядрами – литий, бериллий, бор.
5. В пегматитах преобладают ионы с валентностью 1 и 3 (водород-1, калий-1, натрий-1, алюминий-3, торий-3).
ЛЕКЦИЯ № 13
