
- •1. Горные породы-коллекторы нефти и газа: общая характеристика.
- •2. Структура пустотного пространства горных пород, основные показатели (характеристики).
- •3. Пористость горных пород
- •4. Проницаемость горных пород.
- •5. Удельная поверхность горных пород, ее роль при фильтрации нефти и газа.
- •6. Горное давление. Напряженное состояние горных пород в массиве и в околоскважинных зонах.
- •7. Характеристика горных пород – коллекторов нефти и газа.
- •8. Фильтрационные свойства горных пород.
- •9. Энергетическая характеристика продуктивных пластов.
- •10. Фазовые состояния углеводородных систем. Фазовые диаграммы.
- •11. Ретроградные процессы при разработке газоконденсатных месторождений.
- •12. Растворимость газов в нефти и в воде. Давление насыщения нефти газом.
- •13. Роль капиллярных сил при вытеснении нефти водой.
- •14. Состав и свойства природных и нефтяных газов.
- •15. Состав и свойства нефти.
- •16. Состав и свойства пластовых вод.
- •17. Сжимаемость нефтяных и природных газов.
- •18. Плотность нефти и воды в пластовых и поверхностных условиях.
- •21. Аномально-вязкие нефти. Структурированные (неньютоновские) жидкости.
- •22. Гидраты природных и нефтяных газов. Условия образования.
- •23. Образование и выпадение неорганических кристаллических осадков из пластовых вод.
- •24. Поверхностно-молекулярные свойства системы «порода-вода-нефть-газ».
- •25. Поверхностное (межфазное) натяжение.
- •26. Капиллярное давление.
- •27. Смачиваемость горных пород. Краевой угол смачивания.
- •28. Фильные и фобные свойства горных пород.
- •2 9. Оборудование устья скважины (усшн).
- •30. Оборудование устья скважины (уэцн).
- •31. Оборудование устья фонтанной скважины.
- •32.Оборудование устья газовой скважины.
- •33. Формула Дюпюи для притока жидкости в скважину. Вывод.
- •34. Исследование нефтяных скважин при установившихся режимах.
- •35. Исследование газовых скважин при установившихся режимах.
- •36. Исследование нефтяных скважин при неустановившихся режимах. Квд.
- •37. Фильтрация ж-ти и газа в пористых средах. Скорость движения, скорость фильтрации.
- •38. Линейные и нелинейные законы фильтрации.
- •39. Фазовые и относительные проницаемости.
- •4 0. Индикаторная диаграмма нефтяной скважины.
- •41. Индикаторная диаграмма газовой скважины.
- •42. Обработка данных исследований нефтяной скважины при установившихся режимах.
- •43. Обработка данных исследований газовой скважины при установившихся режимах.
- •44. Геологические запасы нефти и газа, методы их определения (оценки).
- •45. Извлекаемые запасы нефти и газа.
- •46. Коэффициенты нефтеизвлечения (нефтеотдачи).
- •47. Коэффициенты газоотдачи, конденсатоотдачи.
- •48. Влияние геолого-физических факторов на коэффициент нефтеизвлечения
- •49. Гидродинамические режимы работы нефтяных пластов.
- •50. Естественные режимы работы нефтяных пластов:
- •51. Режимы работы нефтяных пластов при поддеожании пластового давления.
- •52. Системы разработки нефтяных и газовых залежей.
- •53. Законтурные и внутриконтурные системы поддержания пластового давления.
- •54. Поршневое и непоршневое вытеснение нефти водой.
- •55. Проектирования нефтяных и газовых залежей. Показатели разработки.
- •56. Стадии разработки нефтяного месторождения.
- •57. Стадии разработки газового месторождения.
- •58. Технологический процесс добычи нефти.
- •59. Система поддержания пластового давления. Состав, технологическая схема.
- •60. Технологический процесс добычи природного газа.
- •61. Забойное давление в нефтяной фонтанной скважине.
- •62. Забойное давление в скважине, оборудованной штанговым насосом.
- •63. Забойное давление в скважине, оборудованной электроцентробежным насосом.
- •64. Плотность водонефтяной смеси.
- •65. Плотность газожидкостной смеси.
- •66. Потери давления на трение в нкт (в скважине).
- •67. Принципиальная схема установки штангового насоса.
- •68. Принципиальная схема установки погружного электроцентробежного насоса.
- •69. Принципиальная схема штангового плунжерного насоса.
- •70. Схема скважины, работающей со скважинным насосом.
- •71. Производительность штангового насоса.
- •72. Коэффициент подачи установки сшн.
- •73. Коэффициент сепарации у приема скважинного насоса.
- •74. Коэффициент наполнения штангового насоса.
- •75. Длина хода плунжера штангового насоса.
- •76. Характеристика н - q для эцн.
- •77. Определение давления на забое скважины при её освоении или промывке.
- •78. Давление у приема скважинного насоса.
- •79. Приток жидкости (нефти) в скважину.
- •80. Приток газа в скважину. Формулы притока.
- •81. Забойное давление в газовой скважине.
- •82. Типовые конструкции забоев скважин.
- •83. Коэффициент продуктивности скважины.
- •84. Конструкции нефтяных и газовых скважин.
- •86. Способы регулирования режима работы усшн.
- •87. Подземное оборудование усшн
- •88. Подземное и наземное оборудование уэцн.
- •89. Способы регулирования режима работы уэцн.
- •90. Схемы устьевых арматур добывающих (нагнетательных) скважин.
- •91. Трубная и колонная головка.
- •92. Скважинные пакеры и якори.
- •93. Глубинные дозаторы реагента.
- •9 4. Скважинные газовые сепараторы.
- •95. Технологический режим работы нефтяной скважины. Показатели режима.
- •96. Технологический режим работы газовой скважины. Показатели режима.
- •97. Оптимизация технологических режимов работы скважины
- •98. Оборудование для текущего и капитального ремонта скважин.
- •99. Оборудование для соляно-кислотной обработки скважин (ско).
- •100. Оборудование для проведения гидравлического разрыва пласта.
- •101. Оборудование для проведения промывок скважин.
- •102. Насосно-компрессорные трубы. Механический расчёт (основы).
- •103. Технология и оборудование для глушения скважин.
- •104. Оборудование для спускоподъёмных операций.
- •105. Основные технологические показатели разработки нефтяных месторождений.
- •106. Основные технологические показатели разработки г. И газ-кон. Месторождений.
- •107. Основное содержание проектных технологических документов при разработке нефтяных месторождений.
- •108. Исходные данные для составления проектных документов при разработке нефтяных и газовых месторождений.
- •109. Основное содержание «Авторского надзора» и «Анализа разработки месторождения».
- •110. Экономическая оценка технологических вариантов разработки месторождения. Основные показатели.
- •111. Требования по охране окружающей среды и недр при разработке нефтяных и газовых месторождений.
- •112. Геолого – гидродинамические модели (основные понятия).
- •113. Горный отвод при разработке нефтяных и газовых месторождений.
- •115. График разработки нефтяного месторождения (залежи).
- •116. График разработки газового (газоконденсатного) месторождения.
- •117. Оценка начальных и остаточных извлекаемых запасов нефти.
- •118. Оценка начальных и остаточных запасов газа.
- •119. Коэффициенты текущей нефтеотдачи и газоотдачи.
- •120. Требования к качеству товарной нефти.
- •121. Требования к качеству газа, закачиваемого в магистральный газопровод. Опасные свойства газа.
- •122. Состав системы сбора и подготовки продукции нефтедобывающих скважин.
- •123 Исходные данные для проектирования системы сбора и подготовки скважинной продукции
- •125. Агзу Спутник. Состав, работа.
- •126. Сепарация нефти (отделение попутного газа). Виды сепарации.
- •127. Гидравлический расчет нефтепровода. Цели и задачи.
- •128. Гидравлический расчет сложных нефтепроводов.
- •130. Принципы расчета гравитационных сепараторов на пропускную способность по газу и жидкости.
- •131. Парафинизация нефтесборных систем. Депарафинизация нефтепроводов.
- •132. Гидравлический расчет газопроводов. Цели и задачи.
- •133. Подготовка нефти на промысле. Цели и задачи.
- •134. Характеристика нефтяных эмульсий.
- •135. Разрушение нефтяных эмульсий (деэмульсация).
- •136. Термохимическое обезвоживание нефти.
- •137. Сбор, подготовка и утилизация сточных вод на промыслах.
- •138. Сбор природного газа на газовых промыслах.
- •139. Промысловая подготовка природного газа.
- •140. Основное оборудование блочной кустовой насосной станции (бкнс).
- •141. Способы снижения пульсации давления при работе поршневых насосов. Подача поршневого насоса
- •142. Водозаборные и очистные сооружения системы ппд.
83. Коэффициент продуктивности скважины.
формула радиального
притока жидкости к скважине
;
Из формулы видно, что дебит жидкости q
зависит от
депрессии
,
которая
является независимым аргументом. Группу
постоянных величин, входящих в эти
формулы, можно обозначить K.
Таким образом,
;
тогда дебит будет равен
-
где q
— дебит скважины при стандартных
условиях, т/сут; K
— коэффициент продуктивности, т/(сут-Па).
Формула получила название формулы
притока. Из нее видно, что приток линейно
зависит от депрессии или при постоянном
давлении на контуре от давления на забое
скважины. Тогда
;
Графическое изображение зависимости
называется
индикаторной линией. Видно, что
индикаторная линия должна быть наклонной
прямой с угловым коэффициентом К.
Чтобы
построить индикаторную линию,
необходимо иметь несколько фактических
значений дебитов и соответствующие
этим дебитам забойные давления.
Искривление индикаторной линии в
сторону оси давления означает увеличение
фильтрационного сопротивления по
сравнению со случаем фильтрации,
описываемым линейным законом Дарси.
Искривление
в сторону оси дебитов объясняется
неодновременным вступлением в работу
отдельных прослоев или пропластков и
разными значениями в них пластовых
давлений. Зная К,
можно
определить гидропроводность ε
= kh/μ.
Для
этого надо решить формулу
относительно
kh/μ.
Зная
по геофизическим данным или по результатам
глубинной дебитометрии h,
а
по лабораторным данным μ, можно определить
проницаемость k
в
районе данной скважины. Обычно вместо
Rк
берут
половину среднего или средневзвешенного
по углу расстояния до соседних скважин.
Для одиночно работающих скважин Rк
принимают равным 250—400 м, исходя из
физических представлений о процессах
фильтрации.
84. Конструкции нефтяных и газовых скважин.
Успешная проводка и заканчивание скважин в значительной степени зависят от правильного выбора конструкции, которая обеспечивает разделение зон, характеризующихся несовместимыми условиями бурения. Обсадньш колонны по назначению подразделяются следующим образом. Направление — первая колонна труб или одна труба, предназначенная для закрепления приустьевой части скважин от размыва буровым раствором и обрушения, а также для обеспечения циркуляции жидкости. Направление, как правило, одно. Кондуктор — колонна обсадных труб, предназначенных для разобщения верхнего интервала разреза горных пород, изоляции пресноводных горизонтов от загрязнения, монтажа противовыбросового оборудования и подвески последующих обсадных колонн.
Промежуточная обсадная колонна (их может быть несколько) служит для разобщения несовместимых по условиям бурения зон при углублении скважины до намеченных глубин. Промежуточные обсадные колонны могут быть следующих видов: сплошные — перекрывающие весь ствол скважины от забоя до ее устья независимо от крепления предыдущего интервала; хвостовики — для крепления только неоосаженного интервала скважины с перекрытием предыдущей обсадной колонны на некоторую величину. Эксплуатационная колонна — последняя колонна обсадных труб, которой крепят скважину для разобщения продуктивных горизонтов от остальных пород и извлечения из скважины нефти или газа или для нагнетания в пласты жидкости или газа. Иногда в качестве эксплуатационной колонны может быть использована (частично или полностью) последняя промежуточная колонна. Основные параметры конструкций скважины: число и диаметр обсадных колонн, глубина их спуска, диаметр долот, которые необходимы для бурения под каждую обсадную колонну, а также высота подъема и качество тампонажного раствора за ними, обеспечение полноты вытеснения бурового раствора. Конструкция скважин должна отвечать условиям охраны окружающей среды и исключать возможное загрязнение пластовых вод и межпластовые перетоки флюидов не только при бурении и эксплуатации, но и после окончания работ и ликвидации скважины. Рациональной можно назвать такую конструкцию скважины, которая соответствует геологическим условиям бурения, учитывает назначение скважины и другие, отмеченные выше, факторы и создает условия для бурения интервалов между креплениями в наиболее сжатые сроки. Общие требования, предъявляемые к конструкциям газовых и газоконденсатных скважин: достаточная прочность конструкции в сочетании с герметичностью каждой обсадной колонны и цементного кольца в заколонном пространстве; качественное разобщение всех горизонтов; достижение предусмотренных проектом режимов эксплуатации скважин, обусловленных проектами разработки горизонта (месторождения); максимальное использование пластовой энергии газа для его транспортирования по внутрипромысловым и магистральным газопроводам.
85. Наземное оборудование УСШН.
Наземное оборудование УСШН включает в себя станок-качалку (СК), блок управления, оборудование устья.
С
танок-качалка
типа СКД:1
— подвеска устьевого штока; 2 — балансир
с опорой; 3— стойка; 4 — шатун;5 — кривошип;6
— редуктор;7 — ведомый шкив; 8 — ремень;
9 — электродвигатель; 10 — ведущий шкив;11
— ограждение;12— поворотная плита; 13 —
рама; 14 — противовес;15 — траверса; 16 —
тормоз. СК
комплектуется набором сменных шкивов
для изменения числа качаний. Для быстрой
смены и натяжения ремней электродвигатель
устанавливается на поворотных салазках.
Монтируется станок-качалка на раме,
устанавливаемой на железобетонное
основание (фундамент). Фиксация балансира
в необходимом (крайнем верхнем) положении
головки осуществляется с помощью
тормозного барабана (шкива). Головка
балансира откидная или поворотная для
беспрепятственного прохода спускоподъемного
и глубинного оборудования при подземном
ремонте скважины. Поскольку головка
балансира совершает движение по дуге,
то для сочленения ее с устьевым штоком
и штангами имеется гибкая канатная
подвеска
сальникового устьевого штока ПСШ.
Она позволяет регулировать посадку
плунжера в цилиндр насоса для предупреждения
ударов плунжера о всасывающий клапан
или выхода плунжера из цилиндра, а также
устанавливать динамограф для исследования
работы оборудования.
Амплитуду движения головки балансира (длина хода устьевого штока) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным. Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях, а также самозапуск СК после перерыва в подаче электроэнергии. Редуктор предназначен для уменьшения частоты вращения, передаваемой от электродвигателя кривошипам станка-качалки. Сальники устьевые предназначены для уплотнения сальникового штока скважин. Устьевые сальники изготавливаются двух типов: СУС1 — с одинарным уплотнением (для скважин с низким статическим уровнем и без газопроявлений); СУС2 — с двойным уплотнением (для скважин с высоким статическим уровнем и с газопроявлениями). Штоки сальниковые устьевые ШСУ предназначены для соединения колонны насосных штанг с канатной подвеской станка-качалки. Штанговращатель – механическое приспособление, закрепляемое на сальниковом штоке для медленного проворачивания штанг и плунжера «на заворот» при каждом ходе головки балансира. Оборудование устьевое предназначено для герметизации устья и регулирования отбора нефти в период фонтанирования при эксплуатации штанговыми скважинными насосами, а также для проведения технологических операций, ремонтных и исследовательских работ в скважинах. Запорное устройство оборудования — проходной кран с обратной пробкой. Скважинные приборы опускаются по межтрубному пространству через специальный патрубок. Для перепуска газа в систему нефтяного сбора и для предотвращения излива нефти в случае обрыва полированного штока предусмотрены обратные клапаны.