Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
garmonichesky_perevod.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
27.78 Кб
Скачать

7.2.5 Значения различных средних для эргодических процессов

Это полезно сделать паузу в этом месте для обобщения значений различных средних для эргодического процесса:

  1. Среднее 𝑋 (𝑡) = ⟨𝑋 (𝑡)⟩ это постоянная составляющая.

  2. ------------постоянного тока

  3. -----------это полная мощность

  4. это мощность в сети переменного тока (изменяющихся во времени).

  5. Общая мощность ----------- сумма переменного тока и постоянного тока.

Таким образом, в случае эргодических процессов, мы видим, что эти моменты являются измеряемыми величинами в том смысле, что они могут быть заменены соответствующими временными средними и конечным временем, приближение к этим временным средним может быть измерено в лаборатории.

Пример 7.2

Чтобы проиллюстрировать некоторые из определений, приведенных выше в отношении корреляционные функции, рассмотрим случайный телеграфный сигнал 𝑋 (𝑡), как показано на рисунке 7.4. Выборочная функция случайного процесса имеет следующие свойства:

  1. значения, принимаемые в любой момент времени 𝑡0 𝑋 (𝑡0)= 𝐴 или 𝑋 (𝑡0)= -𝐴 С равной вероятностью

  2. Количество 𝑘 коммутационных моментов в любом временном интервале 𝑇 подчиняется распределению Пуассона, как определено в (6.182), с сопутствующими допущениями ведущими к этому распределению. (То есть, вероятность более чем одной мгновенной коммутации, происходящей в малый промежуток времени 𝑑𝑡 равна нулю, вероятность равна единице для мгновенных коммутаций, происходящих в 𝑑𝑡 будет α 𝑑𝑡, где α является постоянной. Кроме того, последовательные коммутации являются независимыми.)

Если τ любое положительное приращение времени, то автокорреляционная функция случайного процесса определяется указанными выше свойствами, можно рассчитать:

𝑅𝑋(𝜏) = 𝐸[𝑋 (𝑡) 𝑋(𝑡 + 𝜏)]

= 𝐴2 𝑃 [𝑋 (𝑡) и 𝑋(𝑡 + 𝜏) имеют одинаковый знак]

+(−𝐴2)𝑃 [𝑋 (𝑡) и 𝑋(𝑡 + 𝜏) имеют разные знаки]

= 𝐴2 𝑃 [четное число коммутации моментов в (𝑡, 𝑡 + 𝜏)]

−𝐴2 𝑃 [нечетное число коммутации моментов в (𝑡, 𝑡 + 𝜏)]

Рисунок 7.4 Пример функции случайного телеграфного сигнала.

(7.19)

Предыдущее выражение было проведено в предположении, что τ был положительным. Это может переписать аналогичным образом с τ отрицательным, так что:

(7.20)

Это результат, который имеет место для всех τ. То есть, 𝑅𝑋 (τ) является четной функцией τ, которую в общем мы покажем в ближайшем изложении.

7.3 Корреляция и спектральная плотность мощности

Автокорреляционная функция, вычисленная как статистическое среднее, была определена в (7,6). Если процесс эргодический, функция автокорреляции вычисляется как среднее время, как первое определённое в главе 2, равна статистическому среднему (7,6). В главе 2 мы определили спектральную плотность мощности 𝑆 (𝑓) как преобразование Фурье для автокорреляционной функции 𝑅 (τ). Теорема Винер - Хинчина является формальной постановкой этого результата для стационарных случайных процессов, для которых 𝑅 (𝑡1, 𝑡2) = 𝑅 (𝑡2 - 𝑡1) = 𝑅 (τ). Такие процессы, ранее были определены, как стационарные в широком смысле, спектральная плотность мощности и автокорреляционной функции Фурье-преобразования пары. То есть,

(7.21)

Если процесс эргодичен, то 𝑅 (τ) может быть рассчитана либо как время, либо как в среднее ансамбля.

Так как 𝑅𝑋 (0) = 𝑋2 (𝑡) является средней мощностью в этом процессе, то от обратное преобразование Фурье мы имеем 𝑆𝑋 (𝑓), что

(7.22)

имеет смысл, так как определением 𝑆𝑋 (𝑓) является то, что плотность мощности зависит от частоты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]