
- •Фізика – як наука про природу.
- •Механічний рух і його види.
- •Закон додавання швидкостей.
- •Рівноприскорений рух.
- •Рівномірний рух матеріальної точки по колу
- •20. Ізопроцеси в газах
- •21. Перехід рідини в газоподібний стан
- •22. Водяна пара в атмосфері
- •24. Твердий стан речовини.
- •27. Перший закон термодинаміки
- •28. Двигуни внутрішнього згорання
- •29. Електричні заряди.
- •30. Електричне поле
- •31. Електроємність провідника.
- •8. В електротехніці заряди накопичують у конденсаторах.
- •9. Види конденсаторів
- •33. Активний опір провідників.
- •34. Джерела електричної енергії.
- •Джерелом електричної енергії називають пристрій, який перетворює енергію будь якого виду в електричну.
- •Сторонніми силами називають будь-які сили не електростатичної природи, які діють на заряджені частинки
- •35. Робота та потужність електричного струму.
- •Потенціальну енергію електрона поза металом приймаємо рівною нулю, а всередині металу від’ємною.
- •Контактна різниця потенціалів має різне значення для різних пар металів – від кількох десятих вольта до кількох вольтів.
- •Електрорушійну силу у замкненому колі, складеному з різнорідних металів, яка зумовлена різними температурами контактів, називають термоелектрорушійною силою.
- •Термоелектрорушійна сила у колі з двох різних металів прямо пропорційна різниці температур їх контактів і залежить від роду матеріалів.
- •37. Електричний струм в електролітах.
- •38. Електричний струм в газах.
- •39. Електричний струм у вакуумі.
- •1. Термоелектронна емісія. Залежність струму насичення від температури
- •Напівпровідникові прилади Напівпровідникові діоди
- •41. Магнітне поле як особливий вид матерії.
- •42 Запитання Постійні магніти
- •Магнітне поле землі
- •Пара-,діа-, ферамагнетики
- •43 Запитання Дія магнітного поля на провідник із струмом
- •44 Запитання
- •45 Запитання
- •Магнітний потік
- •46 Запитання
- •Диференціальне рівняння гармонічних коливань
- •47 Запитання
38. Електричний струм в газах.
Гази на відміну від металів і електролітів за звичайних умов складаються з електрично нейтральних атомів та молекул і тому не є провідниками електрики. Досліди підтверджують це. Якщо до двох обкладок плоского повітряного конденсатора під'єднати джерело струму і послідовно увімкнути гальванометр, то в разі замикання електричного кола гальванометр не зафіксує струму. Підігрівши повітряний прошарок конденсатора запаленим сірником, будемо спостерігати помітний струм. Отже, щоб газ став провідним, треба внести або створити в ньому вільні носії заряду. Це можна здійснити, перш за все, способом іонізації нейтральних атомів або молекул газу. Іонізація газів можлива під впливом космічного, рентгенівського або радіоактивного проміння, через зіткнення атомів із швидкими електронами або іншими елементарними чи атомними частинками, під час нагрівання газів тощо. У кожному разі відбувається відщеплення з електронної оболонки атома чи молекули одного або кількох електронів. Цей процес називають іонізацією. Внаслідок іонізації з'являються вільні електрони і позитивно заряджені іони. Вільні електрони, у свою чергу, можуть захоплюватись нейтральними атомами або молекулами, перетворюючи останні в негативні іони. Таким чином, у газі під дією іонізаторів з'являються позитивні і негативні іони та вільні електрони. Газ стає провідником струму. Між іншим, гази (наприклад, повітря) за звичайних природних умов мають незначну провідність, зумовлену частковою іонізацією їх під дією космічного проміння та опромінення радіоактивними елементами, які завжди в невеликій кількості є на поверхні землі та в повітрі.
Атоми і молекули є стійкими системами заряджених частинок. Для відриву від атома електрона потрібно затратити енергію, яку називають енергією або роботою іонізації. Робота іонізації Аі атомів різних газів не однакова. Вона залежить від хімічної природи газу та енергетичного стану електрона в атомі або молекулі. Виражається робота іонізації в електрон-вольтах. Енергію іонізації характеризують потенціалом іонізації φі;, під яким розуміють ту різницю потенціалів, яку має пройти електрон у прискорювальному електричному полі, щоб набути енергії, яка дорівнює роботі іонізації:
Іони та вільні електрони в іонізованому газі, як і нейтральні атоми та молекули, перебувають у постійному хаотичному русі. У разі зближення протилежно заряджених частинок вони з'єднуються між собою і утворюють нейтральні атоми та молекули. Цей процес називають рекомбінацією.
Рекомбінація іонів супроводжується виділенням енергії здебільшого у вигляді світлового випромінювання, тому процеси, які відбуваються при рекомбінації, характерні світінням газу.
Несамостійний розряд у газах
Явища, які пов'язані з проходженням електричного струму крізь газ і супроводжуються зміною стану газу (склад, тиск, енергетичні стани молекул тощо), називають електричним розрядом у газах. Залежно від механізму іонізації розряди в газах поділяють на несамостійні і самостійні. Електричний розряд вважають несамостійним, якщо він виникає тільки під дією іонізатора, а з припиненням його дії розряд зникає. Електропровідність газів досліджують за допомогою газорозрядної трубки (рис. 1) з двома електродами, наповненої досліджуваним газом. Напругу між електродами змінюють потенціометром. Іонізацію здійснюють довільним способом, наприклад, ультрафіолетовим або рентгенівським випромінюванням. Як видно з вольт-амперної характеристики електричного розряду (рис. .2), в газі при постійній потужності іонізатора спочатку зі зміною напруги U струм змінюється лінійно. З подальшим збільшенням напруги залежність І= f(U) набуває нелінійного характеру, а при U >Ul сила струму не залежить від напруги (U = const). Струм Ін називають струмом насичення. З підвищенням напруги U > U2 спостерігається значне зростання сили струму, яке супроводжується тепловими і світловими ефектами. Струм у газах при несамостійному розряді створюється напрямленим рухом іонів і електронів під дією електричного поля.
■
Рис. .1 Рис .2
Самостійний розряд у газах
З підвищенням напруги до значень U > U2 сила струму в газовому розряді різко зростає в сотні і тисячі разів. Дослід показує, що за певних умов припинення дії іонізатора не впливає на протікання розряду. Електричний струм у газі, який проходить без дії зовнішнього іонізатора, називають самостійним розрядом. Самостійний розряд підтримується за досить високої напруги на електродах, при якій той розряд, що почався, самостійно створює потрібні для його подальшого протікання електрони та іони. Поповнення носіїв заряду при самостійному розряді може відбуватись із різних причин, зокрема завдяки механізмові ударної іонізації атомів (молекул) газу. Це процес вибивання електронів з нейтральних атомів під час зіткнення їх з потоком швидких електронів. Отже, несамостійний розряд переходить у самостійний тоді, коли нові іони утворюються внаслідок внутрішніх процесів, що відбуваються у самому газі.
Тліючий розряд
Форма і взаємне розміщення електродів, режим їхньої роботи (підведена потужність, характер охолодження та інші параметри) визначають тип розряду. Кожному типові відповідає певний стан іонізованого газу, який характеризується температурою, електропровідністю, спектрами випромінювання і поглинання тощо. Більше того, виявляється, що стан деякого елемента іонізованого газу для конкретного типу розряду істотно залежить від того, в якій області розрядного проміжку міститься цей елемент, та від його відстані до електрода. У зв'язку з цим розрізняють не тільки типи розрядів, а й області розрядного проміжку, що належать до того самого типу розряду.
Найпростішим і найбільш вивченим типом розряду, в якому газ перебуває в дуже нерівноважному стані, є тліючий розряд. Він спостерігається в газах при низьких тисках (близько 103 Па і менше). Тліючим розрядом називають самостійний розряд, в якому звільнення електронів з катода відбувається внаслідок бомбардування його позитивними іонами і фотонами, що утворюються в газі.