Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ для выполнения аудиторной контрольной работы...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.06 Mб
Скачать

1.14. Сложное движение точки

Рассмотрим движение точки по отношению к двум системам отсчета, из которых одну считаем основной или условно неподвижной, а другую движущуюся по отношению к основной.

Движение, совершаемое точкой, называют сложным. Рассмотрим точку М, движущуюся по отношению к подвижной системе отсчета Охуz, которая в свою очередь движется относительно основной системы отсчета O0x0y0z0, (рис.1.13).

Рис.1.13

Движение, совершаемое точкой М по отношению к подвижной системе отсчета, называется относительным движением . Скорость называется относительной скоростью ( ), а ускорение – относительным ускорением ( ).

Движение, совершаемое подвижной системой отсчета (и всеми связанными с нею точками) по отношению к неподвижной системе отсчета является для точки М переносным движением.

Скорость и ускорение точки, связанной с подвижными осями и с которой, в данный момент времени, совпадает движущаяся точка М, называют переносной скоростью ( ), и переносным ускорением точки М ( ).

Движение, совершаемое точкой по отношению к неподвижной системе, отсчета называется абсолютным , его скорость и ускорение – абсолютной скоростью ( ) и - абсолютным ускорением ( ).

Для решения задач кинематики необходимо установить зависимости между относительными, переносными и абсолютными скоростями и ускорениями точки.

1.15 Теорема сложения скоростей и ускорений – при сложном движении точки

Абсолютная скорость точки равна векторной сумме ее относительной и переносной скоростей.

Модуль абсолютной скорости

,

где α – угол между векторами относительной и переносной скоростей точки.

При сложном движении точки ее абсолютное ускорение равно векторной сумме переносного, относительного и кориолисова ускорения

.

Задача 1

Определить абсолютную скорость в момент времени t=2c точки М, которая движется по диагонали прямоугольной пластины 1 по закону M0M=0,3t2. Сама пластина движется вертикально в плоскости рисунка согласно уравнению . Угол .

Решение

Так как точка М совершает сложное движение, то ее скорость состоит из переносной и относительной скорости точки.

Ответ:

1.16 Ускорение Кориолиса

Ускорение Кориолиса характеризует быстроту изменения переносной скорости в относительном движении и изменение относительной скорости в переносном движении и равно

или ,

где α – угол между векторами и (рис. 2.15).

Из данной формулы видно, что Кориолисово ускорение может обращаться в нуль в следующих случаях:

1) ωe=0, т. е когда переносное движение является поступательным или переносная угловая скорость в данный момент времени обращается в нуль;

2) vr=0, т. е. когда относительная скорость в данный момент времени обращается в нуль;

3) когда α=0 (180º), т. е. когда относительное движение происходит по направлению, параллельному оси переносного вращения.

Направление вектора определяется по правилу Жуковского либо по правилу векторного произведения (рис.1.15):

1. проецируем вектор относительной скорости на плоскость, перпендикулярную оси переносного вращения;

2. поворачиваем полученную проекцию на 90º по направлению переносного вращения (по направлению ωe) - это и есть направление кориолисова ускорения.

Рис.1.15

По правилу векторного произведения – вектор перпендикулярный и направлен так, чтобы поворот от к на угол виден происходящим против хода часовой стрелки.