
- •020200.62 Биология
- •Бакалаврская работа
- •Содержание
- •Глава 1. Обзор литературы …………………………………………………………….5
- •Глава 2. Объекты и методы исследования .............................................................15
- •Глава 3. Результаты исследования …………………………………………………24
- •Глава 1. Обзор литературы
- •Характеристика полигидроксиалканоатов
- •Области применения полигидроксиалканоатов
- •Выявление микроорганизмов-деструкторов
- •Глава 2. Объекты и методы исследования
- •2.1 Объекты исследования микробной деградации в пресной воде
- •2.2 Объекты исследования микробной деградации в почве
- •2.2.1 Основные характеристики почвы дендрария
- •2.2.2 Определение активной кислотности почвы прикорневой зоны лиственницы
- •2.3 Определение способности бактерий к биодеградации
- •2.4 Методы идентификации микроорганизмов
- •Глава 3. Результаты исследования
- •3.1 Исследование микробной биодеградации полигидроксибутирата и полигидроксигексаноата в прикорневой зоне лиственницы
- •3.2 Исследование микробной биодеградации полигидроксибутирата и полигидроксивалерата в пресной воде
- •Биодеградация образцов полимера в почве
Глава 3. Результаты исследования
3.1 Исследование микробной биодеградации полигидроксибутирата и полигидроксигексаноата в прикорневой зоне лиственницы
Микробиологический анализ показал, что в контрольной почве количество бактерий на момент отбора образцов в июне и ноябре было значительно выше, чем в июле и октябре, что объясняется погодными условиями – лето было аномально жарким и сухим. Однако на поверхности полимерных пленок общая численность гетеротрофных бактерий варьировала незначительно (рисунок 7, приложение В).
Рисунок 7 - Общее количество почвенных бактерий (РПА)
По данным литературы полимер является субстратом для микроорганизмов, на нем формируются пленки обрастания, что приводит к увеличению численности микроорганизмов в пленках по сравнению с нативной почвой [3]. В наших исследованиях количество почвенных гетеротрофных бактерий в контрольной почве было выше, чем на поверхности образцов полимеров, или достоверно не отличалась. Однако, количество бактерий-деструкторов, растущих на питательной среде с полимером, к концу эксперимента (ноябрь) было достоверно выше, чем в контрольной почве (рисунок 8).
Рисунок 8 - Общее количество бактерий-деструкторов начальной и конечной точке экспозиции (среда с полимером)
В июне в образцах контрольной почвы и на поверхности полимеров количество бактерий-деструкторов составляло от 1,05 до 4,5×108 КОЕ в 1 г, тогда как в ноябре популяция деструкторов увеличилась на поверхности пленок в 5-20 раз по сравнению с исходной. Это связано с тем, что требуется время для индукции синтеза ферментов, гидролизующих ПГА, и развития микроорганизмов-деструкторов.
Из анализируемых групп микроорганизмов были выделены доминирующие бактерии, способные к гидролизу полимера. В результате скрининга было проверено более 33 изолятов бактерий из прикорневой зоны лиственницы и 13 изолятов актиномицетов. Из них 13 изолятов бактерий и 3 изолята актиномицетов, обладали гидролитической активностью по отношению к полимеру (образование прозрачных зон). Видовое разнообразие существенно различалось: количество штаммов-деструкторов в почве с полимером значительно превышало количество штаммов-деструкторов в контрольной почве.
В целом, по совокупности культуральных, морфологических и физиолого-биохимических признаков бактерии-биодеструкторы были отнесены к следующим родам: Nocardioides, Bacillus, Micrococcus, Acinetobacter, Rhizobium, Pseudomonas.
Изучение таксономического состава микрофлоры контрольных образцов почвы показало, что среди бактерий-деструкторов преобладали грамположительные спорообразующие бактерии рода Bacillus, составляющие около 60% идентифицированных видов. Кроме того, были выделены грамотрицательные бактерии Acinetobacter (20%) и Rhizobium (20%) (рисунок 9).
Рисунок 9 - Процентное соотношение бактерий-деструкторов в контрольной почве
В составе микробоценоза, сформировавшегося вокруг полимерных пленок в условиях прикорневой зоны лиственницы, также преобладали представители рода Bacillus (54,5%), на втором месте по численности – Nocardioides (27,3%). В небольшом количестве были представлены следующие бактерии: Micrococcus, Pseudomonas (9.1%) (рисунок 10).
Рисунок 10 - Процентное соотношение бактерий-деструкторов вокруг полимерных пленок
Род Nocardioides. Представители рода образуют плеоморфные элементы и разветвленный вегетативный мицелий. Вегетативный мицелий представлен обильно ветвящимися гифами, растущими на поверхности и проникающими внутрь агаризованной среды; гифы распадаются на фрагменты, которые могут быть неправильной, палочковидной или кокковидной формы. Воздушный мицелий, если образуется, состоит из неправильных, редко и неправильно ветвящихся или неразветвленных гиф, которые распадаются на палочковидные фрагменты, от коротких до удлиненных. Фрагменты как первичного, так и воздушного мицелия дают новый мицелий. Встречаются штаммы с подвижными и штаммы с неподвижными клетками. Обнаружены по всему земному шару в почвах, а также в травяном покрове (рисунок 11).
Рисунок 11 - Морфология бактерий рода Nocardioides
Род Bacillus. Этот род представлен грамположительными прямыми палочками, 0,5-2,5×1,2-10 мкм, с закругленными концами, часто в парах или цепочках. Подвижные за счет перитрихальных жгутиков. Эндоспоры овальные, высокоустойчивые ко многим неблагоприятным воздействиям и образуется не боле одной споры в клетке. Аэробы и факультативные анаэробы, хемоорганотрофы. Обычно каталазоположительные. Обнаружены в разнообразных местообитаниях, некоторые виды патогенны для позвоночных (рисунок 12).
Рисунок 12 – Морфология бактерий рода Bacillus
Род Micrococcus. Представители рода грамположительные клетки сферической формы 0,5-2 мкм, в парах или тетрадах, но не в цепочках. Редко подвижные, неспорообразующие. Облигатные аэробы, хемоорганотрофы. Колонии обычно желтые или красные, растут на простых средах. Каталазоположительные и мало оксидазоположительные. Встречаются на коже млекопитающих и в почве, однако выделены в основном из пещевых продуктов и из воздуха (рисунок 13).
Рисунок 13 – Морфология бактерий рода Micrococcus
Род Acinetobacter. Бактерии рода грамотрицательные палочки диаметром 0,9-1,6 мкм и длинной 1,5-2,5 мкм в стационарной фазе роста становятся сферическими. Обычно в парах и цепочках, спор не образуют. Движение рывками, предположительно обусловленное наличием полярных фимбрий. Аэробы. Оксидазоотрицательные и каталазоположительные. Встречаются в почве, воде и сточных водах (рисунок 14).
Рисунок 14 – Морфология бактерий рода Acinetobacter
Род Rhizobium. Род представлен грамотрицательными палочками, 0,5-0,9×1,2-3,0 мкм. Для неблагоприятных для роста условиях обычно плеоморфные, содержащие гранулы поли-β-гидроксибутирата. Подвижные за счет единственного полярного или субполярного жгутика либо перитрихальных жгутиков. Аэробы и хемоорганотрофы. Колонии округлые, выпуклые, полупрозрачные, приподнятые, слизистые. Характерная особенность этих организмов – способность проникать в корневые волоски бобовых тропического пояса и вызывать образование корневых клубеньков, в которых бактерии присутствуют как симбионты (рисунок 15).
Рисунок 15 – Морфология бактерий рода Rhizobium
Род Pseudomonas. Представлен грамотрицательными прямыми или слегка изогнутыми палочками, 0,5-1,0×1,5-5,0 мкм. У многих видов накапливается в качестве запасного источника углерода поли-β-гидроксибутират, который виден как включения после окраски суданом. Подвижны за счет одного или нескольких полярных жгутиков; в отдельных случаях неподвижны. Аэробы, хемоорганотрофы. Большинство видов в органических факторах роста не нуждается. Оксидазоположительные или –отрицательные и каталазоположительные. Широко распространены в природе. Некоторые виды патогенны для человека, животных и растений (рисунок 16).
Рисунок 16 – Морфология бактерий рода Pseudomonas
Как показали комплексные исследования, проводимые сотрудниками Института биофизики СО РАН, разрушение полимеров обоих типов в почве под лиственницей в 2013 г. происходило очень медленно из-за недостатка влаги в почве (Приложение Б).