Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диплом киселева 2 проверено.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.71 Mб
Скачать
    1. Области применения полигидроксиалканоатов

ПГА, как уже было отмечено ранее, по ряду физико-химических свойств сходны с широко применяемыми и выпускаемыми в огромных количествах и неразрушаемыми в природной среде синтетическими полимерами типа полипропилена. Линейная структура молекул ПГА придает им свойство термопластичности и изменения прочности. При нагревании молекулярные цепи в ПГА легко сдвигаются относительно друг друга, в результате этого материал размягчается и приобретает текучесть. Данное технологическое свойство имеет большую коммерческую ценность, так как позволяет с использованием различных методов получать из этих полимеров разнообразные изделия. Масштабы применения ПГА в настоящее время сдерживаются достаточно высокой стоимостью, тем не менее сферы их применения постоянно расширяются.[18, 42]

Полигидроксибутират и его сополимеры с валератом используют для получения термоплавких адгезивных материалов, а длинноцепочечные ПГА используют в качестве адгезивов, устойчивых при прессовании. ПГА можно использовать также для замены нефтехимических полимеров в качестве тонеров и проявителей, а также ион-проводящих полимеров.[31, 50, 25, 48, 49]

Из ПГА возможно получение гибких пленок различной толщины, в том числе полупроницаемых мембран, нитей, нетканых материалов, различных полых форм (бутылки, контейнеры, коробки и пр.), а также гелей и клеев. Совокупность свойств, характерных для ПГА, делает их перспективными для применения в различных сферах – медицине, фармакологии, пищевой и косметической промышленности, сельском и коммунальном хозяйстве, радиоэлектронике и других сферах. ПГА активно исследуются с целью переработки в США, Скандинавии и Германии и Голландии. Большой интерес к биодеградируемым ПГА в настоящее время сформировался в США.[18, 42]

Безусловные перспективы и широкий рынок изделий из ПГА наметился в косметологии – это получаемые экструзией различной формы флаконы, банки, бутылки, контейнеры и коробки. Первой бутылкой из ПГА для шампуня стала использовать компания «Wella AG» в Германии.[57]

Отдельные типы ПГА образуют прочные гелии и латексы, поэтому на их основе возможно изготовление клеев, наполнителей, в том числе для стабилизации красителей. Ламинаты ПГА с бумагой и другими полимерами хорошо зарекомендовала себя для изготовления мешков и пакето для хранения разрушаемого мусора, а также одноразовой посуды. Помимо упаковочной тары, контейнеров для пищи и одноразовой посуды, ПГА используют также в качестве пищевых добавок, например, заменителя сливок, средств доставки ароматизаторов и отдушек.[58,59]

Данный материал исследуется и внедряется в различные сферы, включая необычные, например использование в условиях морской воды. Это направление возникло после того, как стало известно, что ПГА достаточно прочны, но при этом хорошо разрушаются не только в почве, но и в морской воде. Моножильные крученые нити из сополимерных ПГА используются для изготовления рыболовных сетей, крабовых ловушек, канатов, а также в практике морской аквакультуры.[28, 52]

Рынок существует и по отношению к продуктам деполимеризации и гидролиза ПГА. Из этих полимеров возможно получение спектра оптически чистых многофункциональных гидроксикислот.[34]

Новое открывающееся направление перспективности ПГА – это получение биотоплива. Недавно показано, что метиловые эфиры 3-гидроксибутирата и среднецепочечных ПГА, полученные этерификацией П3ГБ и среднецепочечных ПГА, могут быть использованы как биотопливо. Температура сгорания этих соединений порядка 20-30 кДж/г, что сопоставимо с температурой сгорания этанола (27кДж/г). По предварительным оценкам, стоимость биотоплива на основе ПГА может составить порядка 1200 дол. США за тонну.[43]

Сегодня существует рынок изделий из ПГА сельскохозяйственного назначения – это пленочная продукция для упаковки продуктов, удобрений, для тепличных хозяйств; горшечная продукция; сетки, канаты и др. В этой связи новым и экологически значимым направлением применения ПГА может стать его использование для депонирования и доставки сельскохозяйственных препаратов. Бурное развитие химии и переход сельского хозяйства на интенсивные технологии привели к появлению и применению огромного разнообразия химических веществ для борьбы с вредителями, сорняками и возбудителями болезней культивируемых видов. Используемые в виде порошков, суспензий и эмульсий, пестициды зачастую не обеспечивают адресную доставку препаратов, что ведет к их рассеиванию и последующей аккумуляции в биосфере. Это вызывает необходимость поиска более эффективных средств и методов защиты полезной биоты, не оказывающих отрицательного воздействия на человека и окружающую среду в целом.[43, 11, 20]

Новым направлением исследований, ориентированных на снижение риска неконтролируемых распространения и аккумуляции ксенобиотиков в биосфере, является разработка экологически безопасных препаратов нового поколения с адресным и контролируемым выходом активного начала за счет использования специальных покрытий или матриксов из биоразрушаемых материалов. Описаны не многочисленные примеры использования полимерных носителей: этилцеллюлозы, полиуретана, альгината натрия, полимеров с памятью формы для депонирования отдельных ядохимикатов.[33, 11, 44, 53]

    1. Биодеградация полигидроксиалканоатов

Способность ПГА к разложению в биологических средах до безвредных продуктов является одним из главных преимуществ, отличающий этот класс соединений от небиоразрушаемых пластиков. ПГА подвергаются биодеструкции как в экосистемах (в почве, водной среде), так и внутри организма. Скорость процесса может сильно варьировать, однако можно выделить несколько основных факторов, влияющих на биологическую деструкцию ПГА и их сополимеров:

  • стереоконфигурация полимера (только эфирные соединения мономеров R-конфигурации гидролизуются микробными деполимеразами);

  • степень кристалличности полимера (скорость деградации более кристалличных образцов ниже);

  • молекулярная масса полимера (чем ниже молекулярная масса ПГА, тем быстрее происходит разложение);

  • состав полимеров [24,27].

Наиболее изучаемым аспектом биодеградации ПГА является способность микроорганизмов использовать данные полимеры в качестве субстратов для роста [27]. ПГА могут разрушаться как внутриклеточно внутриклеточными деполимеразами в период аккумулятивной фазы при отсутствии стабильного источника углерода, так и внеклеточно под влиянием внеклеточных деполимераз. Бактерии, секретирующие полимер после его выделения в среду гибнут. Внутриклеточные ПГА деполимеразы не гидролизуют внеклеточные полигидроксиалканоаты, а внеклеточные деполимеразы не могут разрушать внутриклеточные гранулы, что определяется различиями в физической структуре внутриклеточных "нативных" и внеклеточных "денатурированных" гранул ПГА. Последние являются высоко кристаллизованными полимерами. ПГА нативных гранул полностью аморфны и имеют поверхностный слой, состоящий из протеинов и фосфолипидов. Поверхностный слой постепенно разрушается при выделении гранул или под действием других физических и химических факторов. Структуру и состав слоя изучают биохимически, с помощью молекулярной биологии и электронной микроскопии. Когда поверхностный слой гранул разрушен в течение процесса выделения, полимер агрегируется. Кристаллизованные ПГА не связываются с внутриклеточными ПГА-мобилизованными системами [4, 15,14,51].

В литературе изучена динамика разрушения сопо­лимеров гидроксибутирата и гидроксивалерата, с различной величиной включения последнего и установлено, что сополимерные образцы разрушаются быстрее [35].

Полигидроксиалканоаты могут разрушаться под воздейст­вием высоких температур (свыше 300оС), в результате кислотного и щелочного гидролиза, а также биологическим путем.

При термальном разложении происходит слу­чайное разделение полимера. Под влия­нием кислот или щелочей полигидроксиалканоаты разлагаются, как обычные эфиры. В разбавленных растворах процесс химиче­ского гидролиза полигидроксиалканоатов протекает крайне медленно, но увеличивается при высоких температурах. Биологи­ческая деградация ПГА происходит гидролитически под воздействи­ем специфических ферментов – деполимераз, продуцируемых микроорганизмами, а также ферментами крови и тканей высших животных [19].

В естественных условиях ПГА разрушаются до конечных продуктов – диоксида углерода и воды в аэробных условиях, метана в анаэробных, причем процесс про­исходит довольно быстро. ПГА главным образом разрушаются за счет деятельности микроорганизмов [27,21].

Разрушение полиоксибутирата и сополимера ПГБ/ПГВ (с 10 мол.% гидроксивалерата) изучено при различной температуре (от 15 до 40 оС) в почве. Скорость деградации полимера варьировала от 0,03% до 0,64 % в сутки в зависимости от типа почвы, химического состава полимера и температуры. В основном, с увеличением температуры скорость деструкции возрастала. При исследовании биодеградации ПГБ в почвенном компосте при температуре 24 и 46оС наилучшие показатели деградации зафиксированы при 46 °С [23].

Области применения ПГА в связи с его уникальными свойствами различны. ПГА с успехом может быть применен в качестве матрицы для получения лекарственных форм пролонгированного действия. На основе ПГА существует возможность создания макромолекулярных терапевтических систем – матриц и резервуарных мембран и микросфер для контролируемой доставки лекарственных веществ в организм широкого спектра применения (диабетические средства, антагонисты наркотиков, антиалкогольные средства и противоопухолевые препараты) [3,4].

В число применений ПГА входят биоразлагаемые упаковочные материалы и формованные товары, нетканые материалы, одноразовые салфетки и предметы личной гигиены, пленки и волокна, связывающие вещества и покрытия, связующие материалы для металлических и керамических порошков, водоотталкивающие покрытия для бумаги и картона [7,8].