Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по мат.анализу 2курс.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
392.15 Кб
Скачать

Вопрос30. Дифференциал функции многих переменных.

Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную. Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х.

Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ'(х)•∆х и а•∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так как а второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х:

Поэтому первое слагаемое ƒ'(х)· ∆х называют главной частью приращения функции ∆у.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

dy=ƒ'(х)•∆х.                                             (24.1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у'=х'=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (24.1) можно записать так:

dy=ƒ'(х)dх,                                              (24.2)

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (24.2) следует равенство dy/dx=ƒ'(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.

Вопрос31. Частные производные и дифференциалы высших порядков. Матрица Гессе.

Пусть функция е=f(x,y) имеет перые чатные производные δ f(x,y)// δx , δf(x,y)// δy

В точке М(x,y) и в каждой точке некоторой окрестности точки М(x,y)

Тогда чатсные производные от функций δ f(x,y)// δx , δf(x,y)// δy называются частными производными второго порядка (или вторыми частными производными) от функций z= f(x,y) в точке М(x,y), обозначаются вторые частные производные символами:

Частная производная, взятая по разным переменным, называется смешанной. Если частные производные первого порядка непрерывны, то значение смешанной производной не зависит от порядка дифференцирования, т.е

Определение, Матрицей Гессе функции z= z(X1,X2,…..,Xn)называется матрица, составлена из вторых частных производных данной функции, т.е это матрица.

Вопрос32. Экстремум функции двух и нескольких переменных.

Определение: Пусть задана функция двух переменных z=z(x,y), (x,y) D. Точка M0(x0;y0) - внутренняя точка области D. Если в D присутствует такая окрестность UM0 точки M0, что для всех точек то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. 1.4 поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума). Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.

В частности, точке В соответствует понятие глобального максимума: Аналогично определяется и глобальный минимум:

Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

Теорема (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y) D. Точка M0(x0;y0 D - точка локального экстремума.

Если в этой точке существуют z'x и z'y, то Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом к оси Ох и к оси Оу.

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.

Определение:Если в точке M0 выполняются условия (1.41), то она называется стационарной точкой функции z (x,y). Теорема (достаточные условия экстремума).

Пусть задана z =z (x,y), (x,y) D, которая имеет частные производные второго порядка в некоторой окрестности точки M0(x0,y0) D. Причем M0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим: Если: