- •Введение
- •2. Теория сварочных процессов
- •2.1 Классификация видов сварки
- •2.1.1. Классификация видов сварки по физическим признакам.
- •2.1.2. Классификация видов сварки по техническим признакам.
- •2 .2 Сварочная дуга
- •2.3 Газовое пламя
- •2.4 Физико-химические процессы, протекающие в сварочной ванне
- •2.5 Общие сведения о свариваемости сталей
- •2.6. Термический цикл сварки и структура сварного соединения
- •3. Материалы для сварки и резки металлов
- •3.1 Стальная сварочная проволока
- •3.2. Порошковая проволока
- •3.3 Электроды
- •3.3.1 Покрытые электроды
- •3.3.2 Неплавящиеся электроды
- •3.3.3 Флюсы
- •3.3.4 Газы
- •3.3.5 Подкладки и флюс-пасты для формирования корня шва
- •4.Оборудование для электродуговой сварки металлов
- •4.1. Основные требования к источникам питания дуги
- •4.1.1 Статическая вольтамперная характеристика дуги.
- •4.1.2 Внешние статические вольтамперные характеристики источника питания дуги.
- •4.1.3 Классификация источников питания сварочной дуги
- •4.2 Устройство сварочного трансформатора
- •4.3 Устройство сварочного выпрямителя
- •4.4 Устройство сварочного преобразователя
- •4.5 Устройство агрегаты
- •4.6 Балластные реостаты
- •4.7 Специализированные установки
- •4.8 Осциллятор
- •4.9 Сварочные горелки для дуговой сварки неплавящимся электродом
- •4.10 Сварочные горелки для дуговой сварки плавящимся электродом
- •4.10.1 Правила эксплуатации горелок
- •4.11 Механизм подачи проволоки
- •4.12 Регулятор давления (редуктор)
- •4 Рис.58 .13 Ротаметр
- •4.14 Баллоны
- •4.15 Электродержатели
- •4.16 Кабели и сварочные провода
- •5 Сварные соединения и швы
- •5.1 Виды сварных соединений
- •5.2 Конструктивные элементы сварных швов и соединений.
- •6. Технология ручной дуговой сварки покрытыми электродами
- •6.1 Технология сборки и сварки стыков труб магистральных газопроводов
- •6.1.1 Сборка стыков труб под сварку
- •6.1.2 Сварка стыков труб
- •6.1.4 Приварка запорной арматуры и соединительных деталей.
- •6.2 Устранение трещин в стыках газопроводов
- •6.3 Заварка технологических отверстий
- •7. Технология ручной аргонодуговой сваркой неплавящимся электродом в среде защитных газов
- •7.1 Технология ручной аргонодуговой сварки труб
- •7.2 Технология сварки углеродистых и низколегированных сталей
- •7.3 Технология сварки высоколегированных (нержавеющих) и жаропрочных сталей и сплавов
- •7.4 Технология сварки алюминия и его сплавов
- •7.5 Технология сварки меди и ее сплавов
- •7.6 Бронзы
- •7.7 Латуни
- •7.8 Технология сварки титана и его сплавов
- •8 Технология ручной сваркой плавящимся электродом в среде защитных газов
- •8.1 Технология сварки углеродистых и низколегированных сталей .
- •8.2 Технология сварки среднелегированных (теплоустойчивых) и высоколегированных сталей
- •8.3 Технология сварки алюминия и его сплавов
- •8 Таблица 62 .4 Технология сварки меди и ее сплавов
- •8.5 Бронзы
- •8.6 Технология сварки титана и его сплавов
- •9. Оборудование для газовой сварки, наплавки и резки металлов
- •9.1 Баллоны
- •9.1.1 Кислородные баллоны
- •9.1.2 Ацетиленовые баллоны
- •9.1.3 Баллоны для технического пропана.
- •9.1.4 Маркировка газовых баллонов
- •9.2 Газовые редукторы
- •9.3 Рукава
- •9.4 Сварочные горелки
- •9.5 Резаки для ручной резки
- •9.6 Машины для резки
- •10. Технология газовой сварки
- •10.1 Сварка труб.
- •10.2 Наплавка твердых сплавов
- •10.3 Сварка углеродистых сталей
- •10.4 Сварка легированных сталей
- •11. Техника кислородной резки
- •11.1 Ручная разделительная резка.
- •11.2 Машинная кислородная резка
- •12. Основные дефекты сварных швов и причины их образования
- •13. Виды контроля сварных швов
- •13.1 Визуально измерительный контроль
- •13.2 Радиографический контроль
- •13.3 Ультразвуковой метод контроля
- •13.4 Цветной метод (метод красок)
- •13.5 Магнитные методы контроля
- •13.6 Механические испытания
- •13.7 Испытании керосином
- •13.8 Испытания сжатым воздухом
- •13.9 Испытание аммиаком
- •13.10 Вакуумный контроль
- •13.11 Контроль течеискателями.
- •13.12 Гидравлические испытания
- •13.13 Испытания на коррозию
- •13.14 Испытания твердости
- •14. Аттестационные испытания сварщиков
- •15. Охрана труда, электробезопасность и пожарная безопасность на предприятии
- •15.1 Подключение и эксплуатация электрооборудования
- •15.2 Производственное освещение
- •15.3 Организационно-технические мероприятия по обеспечению пожарной безопасности
- •15.4 Инструкция по охране труда для электросварщика
- •15.5 Инструкция по охране труда для газосварщика
- •Литература
2.1.2. Классификация видов сварки по техническим признакам.
Металл в процессе сварки подвергается воздействию воздуха. Газы воздуха проникают в расплавленный металл, и в результате внутри сварного соединения образуются различные дефекты, что приводит к уменьшению прочности шва. Поэтому следующий признак классификации видов сварки — способ защиты металла в зоне сварки.
Существуют различные способы защиты сварочной ванны:
с помощью электродного покрытия;
защитного газа (углекислого, аргона, гелия);
под слоем специального порошка — флюса;
в вакууме.
В зависимости от степени механизации процесса сварки различают
ручную сварку,
полуавтоматическую (механизированную),
автоматическую.
По продолжительности процесса различают:
непрерывные;
прерывистые
Контрольные вопросы:
Что называется сваркой?
Какие классы, и какие формы энергии используют для образования сварного соединения?
Какие виды сварки соответствуют каждому классу?
Контрольное задание:
Представьте изученный материал в виде схемы, отражающей смысловые связи.
2 .2 Сварочная дуга
С
Рис.1
Расстояние между электродом и металлом заполнено нейтральными атомами воздуха. Воздух при нормальных условиях не проводит электрический ток. Проводимость любого материала зависит от количества находящихся в нем свободных частиц — электронов и ионов.
Электроны, положительные и отрицательные ионы в газах возникают при воздействии на них тепла, электрического поля, ультрафиолетовых лучей и т. д. Процесс образования электронов и ионов называется ионизацией. Прохождение электрического тока через газы называется электрическим газовым разрядом (рис.1).
При соприкосновении торца электрода с металлом происходит короткое замыкание. Торец электрода сильно нагревается за счет теплоты, которая выделяется при прохождении электрического тока через контакт, имеющий большое сопротивление. В момент отрыва электрода с его торца начинают отрываться электроны (это явление называется термоэлектронной эмиссией).
Электроны, двигаясь со скоростью света к противоположному полюсу через воздушный промежуток сталкиваются с атомами воздуха и разбивают их на положительные и отрицательные ионы. При этом выделяется большое количество тепла и лучистой энергии — ультрафиолетовых лучей. Температура дуги достигает 7000°С. Образовавшиеся положительные и отрицательные частицы двигаются к противоположным полюсам. Часть положительных ионов достигает катодного пятна, а другая часть не достигает и, присоединяя к себе электроны, становится атомами (процесс образования нейтральных атомов называется рекомбинацией).
Таким
образом, воздушный промежуток между
торцом электрода и металлом заполняется
заряженными частицами и начинает
проводить сварочный ток, т. е. образуется
дуга. Процесс возникновения дуги длится
всего доли секунды (рис.2).
Рис.2
Необходимыми условиями для устойчивого горения дуги являются:
1. Наличие источника питания дуги, который позволяет быстро нагреть катод до температуры, необходимой для выхода электронов. Для этого источник питания должен иметь напряжение, необходимое для зажигания дуги 60—80 В (напряжение холостого хода).
2. Наличие необходимой степени ионизации в промежутке между электродом и металлом. Для повышения степени ионизации ..
Дуга, горящая без обрывов, называется стабильной. Стабильность горения дуги зависит от ряда причин: от длины дуги, рода тока, напряжения холостого хода, состава обмазки и т. Д
Сварочная дуга состоит из трех основных зон: катодной, анодной и столба дуги. В процессе горения дуги на электроде и металле образуются наиболее нагретые участки. Участок на катоде называется катодным пятном, а на аноде — анодным пятном. Каждая зона характеризуется определенными процессами, имеет свою температуру, длину (рис.3).
Рис.3
Схема
сварочной дуги
Катодное пятно является источником излучения электронов. Температура катода равна 3000°С и близка к температуре кипения материала электрода (для железа — 3500°С). В катодном пятне выделяется около 36% общего количества теплоты дуги
Столб дуги имеет температуру 7000°С. В нем имеются движущиеся электроны, положительные и отрицательные ионы. В столбе дуги выделяется около 21% общего количества теплоты дуги.
Анодное пятно представляет собой место входа электронов. Оно имеет температуру чуть больше катодного пятна, равную 4000°С, так как при ударе электронов на аноде выделяется больше тепла, чем при отрыве электронов на катоде. Таким образом, на аноде выделяется около 43% общего количества теплоты дуги.
Классификация сварочной дуги по подключению к источнику питания
В зависимости от числа электродов и способов включения электродов и свариваемой детали в электрическую цепь различают следующие виды сварочных дуг (рис. 4):
прямого действия, когда дуга горит между электродом и изделием, — используется при: а) дуговой сварке покрытыми электродами; б) при сварке неплавящимся электродом в защитных газах; в) при сварке плавящимся электродом под флюсом или в защитных газах;
косвенного действия, когда дуга горит между двумя электродами, а свариваемое изделие не включено в электрическую цепь, — используется при специальных видах сварки и атомно-водородной сварке и наплавке;
Комбинированная (трехфазная) дуга, возбуждаемая между двумя электродами, а также между каждым электродом и основным металлом, — используется при сварке спиралешовных труб на станках автоматической сварки под флюсом.
Рис.4 а — прямого действия; б — косвенного действия;
в — комбинированная (трехфазная)
Классификация сварочной дуги по полярности постоянного тока
По роду тока различают дуги, питаемые переменным и постоянным током. При применении постоянного тока различают сварку на прямой и обратной полярности (рис. 5). В первом случае электрод подключается к отрицательному полюсу и служит катодом, а изделие — к положительному полюсу и служит анодом; во втором случае электрод подключается к положительному полюсу и служит анодом, а изделие — к отрицательному и служит катодом. В зависимости от материала электрода различают дуги между неплавящимися электродами (угольными или вольфрамовыми) и плавящимися металлическими электродами.
Рис. 5
Классификация сварочной дуги по составу электродного металла
По составу материала электрода — дуга с плавящимся и неплавящимся электродом (рис.6);
Рис. 6
Классификация сварочной дуги по степени сжатия
по степени сжатия столба дуги — свободная и сжатая дуга (рис.7 );
Рис. 7
Классификация сварочной дуги по длине
По длине дуги различают короткая, нормальная и длинная (рис. 8)
Рис. 8
Контрольные вопросы:
Что называется сварочной дугой?
Какие условия необходимы для устойчивого горения дуги?
По каким признакам классифицируется сварочная дуга?
Какими зонами характеризуется сварочная дуга?
Контрольное задание:
Представьте классификацию сварочной дуги в виде схемы, отражающую смысловые связи.
Определите возможность использования данного материала на практике при выполнении сварочных работ.
