Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на аф.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
451.69 Кб
Скачать

24 Билет

1. Закон Кирхгофа. Амплтуда вероятности.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно, хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

       Чтобы устранить эти трудности, немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятностьа величинаназванная амплитудой вероятности и обозначаемая  . Эту величину называют также волновой функцией (или  -функцией). Амплитуда вероятности может быть комплексной, и вероятность Wпропорциональна квадрату ее модуля:

Испускательная способность тела rl численно равна энергии тела dWl, излучаемой телом c единицы поверхности тела, за единицу времени при температуре тела Т, в диапазоне длин волн от lдо l+dl, т.е.

(2)

Эту величину называют также спектральной плотностью энергетической светимости тела.

Поглощательная способность тела al,T - число, показывающее, какая доля энергии излучения, падающего на поверхность тела, поглощается им в диапазоне длин волн от l до l+dl, т.е.

. (4)

Тело, для которого al,T=1 во всем диапазоне длин волн, называется абсолютно черным телом (АЧТ).

Тело, для которого al,T=const<1 во всем диапазоне длин волн называют серым.

Универсальная функция, равная отношению испускательной и поглощательной способностей тела, называется функцией Кирхгофа:

2. Системы тождественных частиц

 Необходимые свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики – принципе неразличимости тождественных частицсогласно которому невозможно экспериментально различить тождественные частицы. В классической механике даже одинаковые частицы можно различить по положению в пространстве и импульсам. Если частицы в какой-то момент времени пронумеровать, то в следующие моменты времени можно проследить за траекторией любой из них. Классические частицы, таким образом, обладают индивидуальностью, поэтому классическая механика систем из одинаковых частиц принципиально не отличается от классической механики систем из различных частиц.

В квантовой механике положение иное. Из соотношения неопределенности вытекает, что для микрочастиц вообще неприменимо понятие траектории; состояние микрочастицы описывается волновой функцией, позволяющей лишь вычислять вероятность  нахождения микрочастицы в окрестностях той или иной точки пространства. Если же волновые функции двух тождественных частиц в пространстве перекрываются, то разговор о том, какая частица находится в данной области, вообще лишен смысла: можно говорить лишь о вероятности нахождения в данной области одной из тождественных частиц. Таким образом, в квантовой механике тождественные частицы полностью теряют свою индивидуальность и становятся неразличимыми. Следует подчеркнуть, что принцип неразличимости тождественных частиц не является просто следствием вероятной интерпретации волновой функции, а вводится в квантовую механику как новый принцип, как указывалось выше, является фундаментальным.

Принимая во внимание физический смысл величины  , принцип неразличимости тождественных частиц можно записать в следующем виде:

 

,

(8.1.1)

где  и  – соответственно, совокупность пространственных и силовых координат первой и второй частиц. Из выражения (8.1.1) вытекает, что возможны два случая:

т.е. принцип неразличимости тождественных частиц ведет к определенному свойству симметрии волновой функции. Если при перемене частиц местами волновая функция не меняет знака, то она называется симметричной, если меняет – антисимметричной. Изменение знака волновой функции не означает изменения состояния, т.к. физический смысл имеет лишь квадрат модуля волновой функции. В квантовой механике доказывается, что характер симметрии волновой функции не меняется со временем. Это не является доказательством того, что свойства симметрии или антисимметрии – признак данного типа микрочастиц.

Установлено, что симметрия или антисимметрия волновых функций определяется спином частиц. В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса: частицы с полуцелым спином (например электроны, нейтроны и протоны) описываются антисимметричными волновыми функциями и подчиняются статистике Ферми–Дирака; эти частицы называются фермионамиЧастицы с нулевымили целочисленнымспином (например фотоны, мезоны)описываются симметричными функциями (волновымии подчиняются статистике Бозе–Эйнштейна; эти частицы называются бозонами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]