- •Содержание учебника
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 2. Таблетки (Tabulettae)
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •Глава 5. Лекарственные средства для парентерального применения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты Общие сведения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •1.1. Теоретические основы экстрагирования
- •1.2. Особенности экстрагирования из растительного сырья с клеточной структурой
- •1.3. Стадии процесса экстрагирования и их количественные характеристики
- •1.4. Основные факторы, влияющие на полноту и скорость экстрагирования
- •1.5. Требования к экстрагентам
- •1.6. Настойки
- •5.6.1. Способы приготовления
- •5.6.1.1. Мацерация
- •1.6.1.2. Перколяция
- •1.6.1.3. Растворение густых или сухих экстрактов
- •1.6.2. Стандартизация
- •1.6.3. Хранение настоек
- •1.6.4. Классификация и номенклатура настоек
- •Настойки простые.
- •Настойки сложные.
- •1.6.5. Рекуперация экстрагентов из отработанного сырья
- •1.7. Экстракты
- •1.7.1. Жидкие экстракты
- •1.7.2. Способы получения
- •1.7.3. Очистка
- •1.7.4. Стандартизация
- •1.7.5. Номенклатера жидких экстрактов
- •1.7.6. Хранение
- •1.8. Густые и сухие экстракты
- •1.8.1. Способы получения
- •2) Очистка вытяжки;
- •3) Сгущение вытяжки;
- •2) Очистка вытяжки;
- •1.8.1.1. Получение вытяжек
- •Экстрагирование с использованием электроплазмолиза и электродиализа
- •1.8.1.2. Очистка вытяжки
- •1.8.1.3. Сгущение вытяжки.
- •5.8.1.4. Высушивание вытяжки
- •1.8.2. Стандартизация
- •1.8.3. Номенклатура густых и сухих экстрактов (по Государственному реестру ) и основные их показатели (по гф и вфс) Густые экстракты
- •Сухие экстракты а. С нелимитированным верхним пределом действующих веществ
- •Б. С лимитированным верхним пределом действующих веществ
- •1.8.4. Хранение
- •1.9. Экстракты-концентраты
- •1.10. Масляные экстракты
- •Глава 2. Таблетки (Tabulettae)
- •2.1. Определение таблеток как лекарственной формы
- •2.2. Характеристика таблеток
- •2.3. Классификация таблеток
- •2.4. Свойства порошкообразных лекарственных субстанций
- •2.4.1. Физико-химические свойства
- •2.4.2. Технологические свойства
- •2.5. Основные группы вспомогательных веществ в производстве таблеток
- •2.6. Технологический процесс производства таблеток
- •2.6.1. Прямое прессование
- •2.6.2. Гранулирование
- •2.7. Типы таблеточных машин
- •2.8. Факторы, влияющие на основные качества таблеток – механическую прочность, распадаемость и среднюю массу
- •2.9. Влияние вспомогательных веществ и вида грануляции на биодоступность лекарственных веществ из таблеток
- •2.10. Покрытие таблеток оболочками
- •2.10.1. Прессованные покрытия
- •2.10.2. Пленочные покрытия
- •2.10.3. Способы нанесения пленочных покрытий
- •2.11. Тритурационные таблетки
- •2.12. Контроль качества таблеток
- •2.13. Фасовка, упаковка и маркировка таблеток
- •2.14. Условия хранения таблеток
- •2.15. Пути совершенствования таблеток
- •2.15.1. Многослойные таблетки
- •2.15.2. Таблетки с нерастворимым скелетом
- •2.15.3. Таблетки с ионитами
- •2.16. Гранулы. Микродраже. Спансулы. Драже
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Общие сведения
- •3.1. Современная классификация и общая характеристика
- •В нашей стране номенклатура капсулированных препаратов находится на стадии 3.2. Характеристика основных и вспомогательных веществ
- •3.3. Производство желатиновых капсул
- •3.4. Мягкие желатиновые капсулы
- •Метод прессования
- •3.5. Твердые желатиновые капсулы
- •3.6. Автоматы для наполнения капсул
- •Методы инкапсулирования
- •3.7. Контроль качества
- •3.8. Факторы, влияющие на биологическую доступность лекарственных веществ в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •4.1. Общие сведения
- •4.2. Современные требования к мазям
- •4.3. Требования, предъявляемые к мазевым основам
- •4.4. Классификация мазевых основ
- •4.5. Технология производства мазей на фармацевтических предприятиях
- •4.6. Стандартизация мазей
- •4.7. Фасовка и упаковка мазей
- •Последовательность работы тубонаполнительных машин
- •4.8. Хранение
- •4.9. Перспективы развития промышленного производства мазей
- •Глава 5. Лекарственные средства для парентерального применения
- •5.1. Общая характеристика. Классификация. Требования
- •5.2. Создание условий к производству стерильной продукции
- •Общие требования к производству стерильной продукции. Классы чистоты помещений
- •Требования к производственным помещениям и чистоте воздушной среды
- •Обеспечение производственных помещений чистым воздухом
- •Требования, предъявляемые к персоналу и спецодежде
- •Требования к технологическому процессу
- •Требования к технологическому оборудованию
- •Требования к контролю качества
- •5.3. Производство ампул в заводских условиях
- •Ампулы как вместилища для инъекционных растворов
- •Стекло для инъекционных растворов. Получение, технические требования
- •Химическая стойкость стекла
- •Классы и марки ампульного стекла
- •Определение основных показателей ампульного стекла
- •Изготовление ампул на полуавтоматах
- •5.4. Подготовка ампул к наполнению
- •Способы мойки ампул
- •Сушка и стерилизация ампул
- •5.5. Требования к исходным веществам
- •5.6. Водоподготовка Сведения о водопроводной воде
- •Получение деминерализованной воды
- •Получение воды очищенной (дистиллированной). Требования, предъявляемые к ней
- •5.7. Растворители для стерильных и асептически приготовленных лекарственных средств
- •Получение воды для инъекций в промышленных условиях
- •Оборудование для получения воды очищенной и воды для инъекций
- •Сведения о пирогенности
- •Методы обнаружения пирогенов
- •Методы удаления пирогенных веществ
- •Неводные растворители
- •5.8. Приготовление растворов для инъекций
- •Изотонирование инъекционных растворов
- •Стабилизация растворов
- •Механизм действия стабилизаторов
- •Теории окислительно-восстановительных процессов
- •1. Стабилизация растворов глюкозы
- •2. Стабилизация раствора аскорбиновой кислоты
- •3. Стабилизация 5, 10 и 20% растворов новокаина
- •Фильтрация инъекционных растворов Источники механических загрязнений инъекционных растворов
- •Конструкции фильтрующих установок, используемых в производстве инъекционных растворов
- •5.9. Ампулирование
- •Наполнение ампул раствором
- •Оборудование для наполнения ампул
- •Оборудование для запайки ампул
- •Аппарат для запайки ампул типа ап-6м
- •Машина для запайки ампул с инертной средой типа 432
- •5.10. Методы стерилизации
- •Механические методы стерилизации
- •Химические методы стерилизации
- •Физические методы стерилизации
- •5.11. Методы контроля качества инъекционных растворов
- •5.12. Маркировка и упаковка
- •5.13. Особенности производства некоторых инъекционных лекарственных форм
Неводные растворители
Для приготовления инъекционных лекарственных форм, кроме воды для инъекций, используют также неводные растворители. Применение этих растворителей позволяет получить растворы из нерастворимых или труднорастворимых в воде веществ, устранить гидролиз, получить растворы лекарственных веществ пролонгированного действия. Неводные растворители обладают различной растворяющей способностью, антигидролизными, стабилизирующими и бактерицидными свойствами. Однако далеко не все неводные растворители могут быть использованы для получения стерильных растворов вследствии фармакологической активности, токсичности, иногда гемолитического действия. В связи с этим к неводным растворителям предъявляются следующие требования: они не должны обладать острой и хронической токсичностью, вызывать местное раздражающее действие; должны обладать высокой растворяющей способностью с лекарственными веществами; должны быть химически и биологически совместимы; быть устойчивыми при стерилизации; иметь низкую вязкость. Кроме того, температура кипения должна быть не более 100°С , температура замерзания – не выше +5°С.
По химической природе неводные растворители делятся на несколько групп: жирные масла, одноатомные и многоатомные спирты, простые и сложные эфиры, амиды, сульфоны и сульфоксиды.
Для приготовления инъекционных растворов применяются неводные растворители, как индивидуальные так и смешанные: водно-глицериновые, водно-пропиленовые, спирто-водно- глицериновые и др.
Весьма широко применяются смеси жирных масел с бензилбензоатом, этилолеатом. Смешанные растворители обладают большей растворяющей способностью, чем каждый растворитель в отдельности. Такое явление называется сорастворением, а растворители – сорастворителями. В настоящее время сорастворители широко используются для получения инъекционных растворов труднорастворимых веществ.
Неводные растворители применяются для приготовления инъекционных лекарственных форм, содержащих гормоны, витамины, антибиотики, камфору, барбитураты, серу, соли ртути и др.
Масла растительные.Масла растительные являются неводными растворителями, применяемыми для приготовления инъекционных препаратов, и после воды являются самыми распространенными растворителями.
Растительные масла представляют собой эфиры ненасыщенных жирных кислот, смеси фосфатидов, свободных жирных кислот и др. веществ. Жирное масло содержит липазы, которые в присутствии малейшего количества воды вызывают омыление масла с образованием свободных жирных кислот, поэтому масла должны быть полностью обезвожены. Образующиеся продукты могут взаимодействовать со многими лекарственными и вспомогательными веществами, изменяя их свойства, кроме того кислые масла раздражают нервные окончания и могут вызвать болевые ощущения.
Это прозрачные слабо окрашенные маслянистые жидкости, маловязкие, без запаха или со слабым запахом, нерастворимые в воде, малорастворимые в спирте, легкорастворимые в эфире, хлороформе, петролейном эфире. В соответствии с требованиями ГФ ХI масла для стерильных растворов должны быть получены методом холодного прессования из свежих семян.
При анализе жирных масел определяют их цвет, вкус, запах, растворимость и числовые показатели. Жирные масла не должны содержать белка и минеральных примесей, иметь кислотное число не более 2,5; содержание мыла в них должно составлять не более 0,001% и т.д.
К недостаткам масляных растворов следует отнести их относительно высокую вязкость, болезненность инъекций, плохое рассасывание и возможность образования гранулем в месте введения. Для уменьшения вязкости в некоторых случаях добавляют этиловый или этилгликолевый эфир. Растворимость некоторых веществ в маслах увеличивают путем добавления сорастворителей или солюбилизаторов (бензилового спирта, бензилбензоата), которые одновременно повышают и стабильность масляных растворов.
В основном жирные масла применяют для внутримышечных инъекций и довольно редко – для подкожных.
Наиболее широко используется масло персиковое, миндальное, оливковое, подсолнечное, соевое и другие, которые должны быть рафинированными и дезодорированы. Персиковое масло применяется для приготовления инъекционных растворов витаминов (эргокальциферола, ретинола ацетата), гормонов (прогестерона, синэстрола, тестостерона пропионата т др.), камфоры, кризанола, а также взвесей (бийохинола).
Менее распространенным является масло оливковое, которое применяется для изготовления 20% раствора камфоры и 2% раствора синэстрола.
Все масла, предназначенные для приготовления инъекционных растворов необходимо подвергать предварительной стерилизации при температуре 120°С в течение 2 ч.
Спирты одно- и многоатомные. Одноатомные и многоатомные спирты применяются в качестве неводных растворителей во многих странах мира. Они смешиваются с водой, менее вязки, чем масла, и обладают способностью растворять многие лекарственные субстанции.
Из одноатомных спиртов наибольшее распространение получил этиловый спирт, из многоатомных пропиленгликоль, глицерин и полиэтиленгликоль.
Этиловый спирт при подкожном введении вызывает боль, а затем анестезию; кроме того он обладает собственным фармакологическим действием, поэтому и не может применяться в неразбавленном состоянии. Ввиду хорошей растворимости в нем различных органических веществ этиловый спирт часто применяется в качестве компонента многих растворов для инъекций. В качестве сорастворителя в смеси с водой он применяется для получения инъекционных растворов гидрокортизона, ряда сердечных препаратов: дигитоксина (50% спирта), мефеназина (25% спирта), дигоксина (10% спирта), и др.
Этиловый спирт используется как сорастворитель и консервант в концентрации от 2 до 30 % при изготовлении растворов сердечных гликозидов: конваллятоксина, целанида, эризимина, и строфантина К. Этиловый спирт включен в состав смешанных растворителей (используемых для приготовления инъекционных растворов) в Международную фармакопею 2-го издания и фармакопеи ряда зарубежных стран.
Этиловый спирт может применятся в качестве так называемого промежуточного растворителя. Этот технологический прием используется для приготовления растворов некоторых противоопухолевых препаратов, нерастворимых ни в воде, ни в маслах. С этой целью препараты растворяют в минимальном количестве этилового спирта, смешивают с оливковым маслом (получается эмульсия), затем спирт отгоняется под вакуумом и получается масляный раствор.
При изготовлении некоторых растворов для инъекций используется бензиловый спирт в концентрации 1-10% в качестве сорастворителя. С этой же целью в технологии инъекционных растворов используется и пропиленгликоль (в смеси с водой и добавкой этилового или бензилового спирта) Он является хорошим растворителем для сульфаниламидов, барбитуратов, антибиотиков и других лекарственных веществ. Его используют при получении микрокристаллической суспензии гидрокортизона ацетата 2,5%.
Как солюбилизатор и стабилизатор рекомендован спирт поливиниловый для получения некоторых водных суспензий.
Пропиленгликоль (пропандиол-1,2) представляет собой прозрачную, бесцветную вязкую жидкость, поглощающую влагу из воздуха.
Пропиленгликоль является хорошим растворителем для сульфамидов, барбитуратов, витаминов А и D, антибиотиков, анестезина, алкалоидов в форме оснований и многих других лекарственных веществ.
Пропиленгликоль как растворитель самостоятельно применяется ограниченно, например, в препаратах хинидина. Чаще всего используют в вице 40-70% водных растворов, а также в смеси с другими сорастворитедями (этиловым спиртом, этаноламином, полиэтиленгликолями).
Растворы, содержащие до 50% пропиленгликоля, используются для внутривенных, свыше 50% для внутримышечных инъекций.
Пропиленгликоль способствует пролонгированию действия ряда лекарственных препаратов.
Глицерин – прозрачная вязкая жидкость с высокой температурой кипения, смешивается с водой и спиртом. Он обладает высокой гигроскопичностью и может поглощать до 40% воды.
Глицерин в концентрации до 30% используется в качестве сорастворителя в смесях с водой или этиловым спиртом.
В инъекционных препаратах отечественного производства глицерин в концентрации до 10% применяется как сорастворитель в растворах целанида, випраксина, мезатона, фетанола, дибазола.
Для получения растворов легко гидролизующихся лекарственных веществ предложен сорбит и маннит в концентрации 60% в воде.
Полиэтиленгликоли (ПЭГ), получаемые путем поликонденсации окиси этилена и этиленгликоля, соответствуют общей формуле:
Н—(—ОСН2—СН2—)nОН,
где «n» может изменяться от 2 до 85 и выше. ПЭГ различаются по средней молекулярной массе. ПЭГ 200, 300, 400, 600 вязкие, бесцветные, прозрачные, умеренно гигроскопичные жидкости со слабым характерным запахом. Они нейтральны, физиологически индифферентны, растворимы в воде и спирте, устойчивы при хранении и не подвергаются гидролизу.
В качестве растворителей для парентеральных препаратов применяются низкомолекулярные поликонденсаты, находящиеся при нормальных условиях в жидком состоянии. Чаще всего используется полиэтиленоксид (ПЭО 400), как прекрасный растворитель сульфаниламидов, анестезина, камфоры, бензойной и салициловой кислот, фенобарбитала. Предложен также способ приготовления растворов антибиотиков в стерильном растворе ПЭО 400. ПЭО используется для получения растворов для инъекций производных сарколизина, обладающих выраженной противоопухолевой активностью.
ПЭГ обладает способностью растворять многие лекарственные вещества. В концентрации до 70% применяются для внутримышечных и внутривенных инъекций. Внутримышечное введение их легко переносится и растворители выводятся из организма больного в течение 24 ч, причем 77% удаляется в течение 12 ч.
ПЭГ 200 предложено использовать для приготовления растворов ванкомицина, фенобарбитала, аскорбината натрия.
ПЭГ 400 используется в препаратах дигоксин, биомицин, левомицетин, пенициллин и др.
Простые и сложные эфиры. Эфиры являются менее вязкими, чем масла, и обладают хорошей растворяющей способностью, все чаще используются при приготовлении инъекционных растворов. К ним относятся этиловые эфиры олеиновой, линолевой, линоленовой, кислот, октиловый эфир левуленовой кислоты и др.
Бензилбензоат. Бензилбензоат (бензиловый эфир бензойной кислоты) представляет собой бесцветную маслянистую жидкость, практически нерастворим в воде, смешивается с этиловым спиртом. Значительно увеличивает растворимость в маслах труднорастворимых веществ из класса стероидных гормонов. Кроме того, бензилбензоат предотвращает кристаллизацию веществ из масел в процессе хранения . Смеси бензилбензоата с персиковым маслом (10-50%) не оказывают токсического действия. В ГФ Х включены следующие масляные растворы гормональных препаратов с добавлением 20-30% бензилбензоата: растворы прогестерона, оксипрогестерона, капроната и тестостерона пропионата.
Гликофурол – полиэтиленгликолевый эфир тетрагидрофурфурилового спирта. Представляет собой бесцветную жидкость, растворимую в метаноле, этаноле и глицерине; смешивается с водой в любом соотношении.
Используют гликофурол в растворе ацетилхолина и роникола.
Изопропилмиристат как растворитель состоит из изопропилмиристата и изопропиловых эфиров других насыщенных кислот. Он используется в качестве индифферентной основы при введении эстрогенов.
Этилолеат – синтетический сложный эфир. Представляет собой продукт этерификации олеиновой кислоты этиловым спиртом. Светло-желтая маслянистая жидкость, нерастворимая в воде; смешивается со спиртом, эфиром, маслами.
Применение этилолеата вместо масел дает возможность исключить ряд технологических операций в процессе приготовления растворов: предварительное обезвоживание масел и их стерилизацию, а также упростить операции фильтрации и ампулирования. Он имеет ряд преимуществ по сравнению с маслами: смешивается со спиртом, эфиром, не вызывает побочных явлений, обладает постоянным химическим составом и меньшей вязкостью (так, вязкость оливкового масла при температуре 200°С равна 80,3 сП, вязкость этилолеата при той же температуре составляет всего 6,2 сП), а также большей стабильностью при тепловой стерилизации (1500°С в течение 1 часа). Благодаря меньшей по сравнению с растительными маслами вязкости, этилолеат быстрее адсорбируется тканями, является более удобным растворителем.
Этилолеат хорошо растворяет салициловую кислоту, анестезин, пенициллин, ряд других антибиотиков, холестерин, витамины, стероидные гормоны, камфору и др. Установлено, что при внутримышечном введении препарата на этилолеате в отличие от растительных масел наблюдается его быстрое и полное рассасывание.
Однако, наличие двойной связи в химическом строении этилолеата способствует его быстрому окислению. Для предотвращения этого процесса предложено добавлять к нему антиоксиданты ( α-токоферол, бутилокситолуол и др.) и проводить стерилизацию в атмосфере инертного газа.
Как растворитель для инъекций этилолеат включен в Международную фармакопею 2-го издания, по которой разрешается использовать этилолеат вместо растительного масла. Этилолеат применяется также как добавка к масляным растворам для увеличения растворимости и понижения их вязкости.
Диоксаны и диоксоланы представляют собой продукты взаимодействия глицерина с карбонильными соединениями в присутствии де-гидратирующето агента. Наименее токсичный представитель этой группы 2,2-диметил-4-метанол-1,3-диоксолан. Это соединение известно под названием солькеталь, глицерол-диметилкеталь и др.
Солькеталь – бесцветная жидкость, стабильная при хранении, устойчивая к действию щелочей, смешивается с водой, спиртом и другими органическими растворителями. В присутствии растворов сильных кислот гидролизуется с образованием ацетона и глицерина.
Соединение относительно безвредно, не раздражает оболочки и ткани. Солькеталъ используется при производстве парентеральных растворов тетрациклина.
Глицероформаль является продуктом конденсации глицерина с формальдегидом и представляет собой смесь 25% З-окси-метил-1,3-диоксолана и 75% 5-оксидиоксолана. Глицероформалъ – бесцветное вещество с невысокой вязкостью, неограниченно смешивается с водой, малотоксичен.
Амиды. Растворители, относящиеся к группе амидов, в препаратах для инъекций применяются в концентрации от 5 до 50%, часто в сочетании с пропиленгликолем, этаноламином.
N,N-диметилацетамид представляет собой прозрачную нейтральную жидкость с температурой кипения 165,5ºС и плотностью 0,493. Для приготовления инъекционных растворов левомицетина, окситетрациклина, тетрациклина используют 50% водный раствор диметилацетамида. Он обладает противовоспалительным действием.
N-β-оксиэтиллактамид карбоксамид молочной кислоты представляет собой бесцветную прозрачную сиропообразную жидкость, смешивающуюся с водой. Применяется в виде 50% водных растворов, обладает стабильностью, не раздражает ткани. Применяется в инъекционных растворах тетрациклина, причем действие препарата пролонгируется на сутки.
Сульфоксиды и сульфоны. Высокую растворяющую способность имеют диметилсульфоксид и сульфолан. Они обладают незначительной токсичностью, смешиваются со многими растворителями. Предложены для приготовления многих инъекционных препаратов.
Среди растворителей класса сульфоксидов и сульфонов наибольший интерес представляют диметилсульфоксид и сульфолан.
Диметилсульфоксид очень гигроскопичная жидкость; при 20ºС поглощает около 70% воды, малотоксичен.
Сульфолан – тетрагидротиофен-1,1-диоксид, тетраметиленсульфон, высококипящий органический растворитель с большой диэлектрической проницаемостью.
