- •Содержание учебника
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 2. Таблетки (Tabulettae)
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •Глава 5. Лекарственные средства для парентерального применения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты Общие сведения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •1.1. Теоретические основы экстрагирования
- •1.2. Особенности экстрагирования из растительного сырья с клеточной структурой
- •1.3. Стадии процесса экстрагирования и их количественные характеристики
- •1.4. Основные факторы, влияющие на полноту и скорость экстрагирования
- •1.5. Требования к экстрагентам
- •1.6. Настойки
- •5.6.1. Способы приготовления
- •5.6.1.1. Мацерация
- •1.6.1.2. Перколяция
- •1.6.1.3. Растворение густых или сухих экстрактов
- •1.6.2. Стандартизация
- •1.6.3. Хранение настоек
- •1.6.4. Классификация и номенклатура настоек
- •Настойки простые.
- •Настойки сложные.
- •1.6.5. Рекуперация экстрагентов из отработанного сырья
- •1.7. Экстракты
- •1.7.1. Жидкие экстракты
- •1.7.2. Способы получения
- •1.7.3. Очистка
- •1.7.4. Стандартизация
- •1.7.5. Номенклатера жидких экстрактов
- •1.7.6. Хранение
- •1.8. Густые и сухие экстракты
- •1.8.1. Способы получения
- •2) Очистка вытяжки;
- •3) Сгущение вытяжки;
- •2) Очистка вытяжки;
- •1.8.1.1. Получение вытяжек
- •Экстрагирование с использованием электроплазмолиза и электродиализа
- •1.8.1.2. Очистка вытяжки
- •1.8.1.3. Сгущение вытяжки.
- •5.8.1.4. Высушивание вытяжки
- •1.8.2. Стандартизация
- •1.8.3. Номенклатура густых и сухих экстрактов (по Государственному реестру ) и основные их показатели (по гф и вфс) Густые экстракты
- •Сухие экстракты а. С нелимитированным верхним пределом действующих веществ
- •Б. С лимитированным верхним пределом действующих веществ
- •1.8.4. Хранение
- •1.9. Экстракты-концентраты
- •1.10. Масляные экстракты
- •Глава 2. Таблетки (Tabulettae)
- •2.1. Определение таблеток как лекарственной формы
- •2.2. Характеристика таблеток
- •2.3. Классификация таблеток
- •2.4. Свойства порошкообразных лекарственных субстанций
- •2.4.1. Физико-химические свойства
- •2.4.2. Технологические свойства
- •2.5. Основные группы вспомогательных веществ в производстве таблеток
- •2.6. Технологический процесс производства таблеток
- •2.6.1. Прямое прессование
- •2.6.2. Гранулирование
- •2.7. Типы таблеточных машин
- •2.8. Факторы, влияющие на основные качества таблеток – механическую прочность, распадаемость и среднюю массу
- •2.9. Влияние вспомогательных веществ и вида грануляции на биодоступность лекарственных веществ из таблеток
- •2.10. Покрытие таблеток оболочками
- •2.10.1. Прессованные покрытия
- •2.10.2. Пленочные покрытия
- •2.10.3. Способы нанесения пленочных покрытий
- •2.11. Тритурационные таблетки
- •2.12. Контроль качества таблеток
- •2.13. Фасовка, упаковка и маркировка таблеток
- •2.14. Условия хранения таблеток
- •2.15. Пути совершенствования таблеток
- •2.15.1. Многослойные таблетки
- •2.15.2. Таблетки с нерастворимым скелетом
- •2.15.3. Таблетки с ионитами
- •2.16. Гранулы. Микродраже. Спансулы. Драже
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Общие сведения
- •3.1. Современная классификация и общая характеристика
- •В нашей стране номенклатура капсулированных препаратов находится на стадии 3.2. Характеристика основных и вспомогательных веществ
- •3.3. Производство желатиновых капсул
- •3.4. Мягкие желатиновые капсулы
- •Метод прессования
- •3.5. Твердые желатиновые капсулы
- •3.6. Автоматы для наполнения капсул
- •Методы инкапсулирования
- •3.7. Контроль качества
- •3.8. Факторы, влияющие на биологическую доступность лекарственных веществ в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •4.1. Общие сведения
- •4.2. Современные требования к мазям
- •4.3. Требования, предъявляемые к мазевым основам
- •4.4. Классификация мазевых основ
- •4.5. Технология производства мазей на фармацевтических предприятиях
- •4.6. Стандартизация мазей
- •4.7. Фасовка и упаковка мазей
- •Последовательность работы тубонаполнительных машин
- •4.8. Хранение
- •4.9. Перспективы развития промышленного производства мазей
- •Глава 5. Лекарственные средства для парентерального применения
- •5.1. Общая характеристика. Классификация. Требования
- •5.2. Создание условий к производству стерильной продукции
- •Общие требования к производству стерильной продукции. Классы чистоты помещений
- •Требования к производственным помещениям и чистоте воздушной среды
- •Обеспечение производственных помещений чистым воздухом
- •Требования, предъявляемые к персоналу и спецодежде
- •Требования к технологическому процессу
- •Требования к технологическому оборудованию
- •Требования к контролю качества
- •5.3. Производство ампул в заводских условиях
- •Ампулы как вместилища для инъекционных растворов
- •Стекло для инъекционных растворов. Получение, технические требования
- •Химическая стойкость стекла
- •Классы и марки ампульного стекла
- •Определение основных показателей ампульного стекла
- •Изготовление ампул на полуавтоматах
- •5.4. Подготовка ампул к наполнению
- •Способы мойки ампул
- •Сушка и стерилизация ампул
- •5.5. Требования к исходным веществам
- •5.6. Водоподготовка Сведения о водопроводной воде
- •Получение деминерализованной воды
- •Получение воды очищенной (дистиллированной). Требования, предъявляемые к ней
- •5.7. Растворители для стерильных и асептически приготовленных лекарственных средств
- •Получение воды для инъекций в промышленных условиях
- •Оборудование для получения воды очищенной и воды для инъекций
- •Сведения о пирогенности
- •Методы обнаружения пирогенов
- •Методы удаления пирогенных веществ
- •Неводные растворители
- •5.8. Приготовление растворов для инъекций
- •Изотонирование инъекционных растворов
- •Стабилизация растворов
- •Механизм действия стабилизаторов
- •Теории окислительно-восстановительных процессов
- •1. Стабилизация растворов глюкозы
- •2. Стабилизация раствора аскорбиновой кислоты
- •3. Стабилизация 5, 10 и 20% растворов новокаина
- •Фильтрация инъекционных растворов Источники механических загрязнений инъекционных растворов
- •Конструкции фильтрующих установок, используемых в производстве инъекционных растворов
- •5.9. Ампулирование
- •Наполнение ампул раствором
- •Оборудование для наполнения ампул
- •Оборудование для запайки ампул
- •Аппарат для запайки ампул типа ап-6м
- •Машина для запайки ампул с инертной средой типа 432
- •5.10. Методы стерилизации
- •Механические методы стерилизации
- •Химические методы стерилизации
- •Физические методы стерилизации
- •5.11. Методы контроля качества инъекционных растворов
- •5.12. Маркировка и упаковка
- •5.13. Особенности производства некоторых инъекционных лекарственных форм
Методы удаления пирогенных веществ
Методы депирогенизации подразделяются на:
химические;
физические;
энзиматические.
Химические методы удаления пирогенов. Растворы, содержащие пирогены, нагревают при 100°С в течение 2 часов с добавкой 0,1 моля перекиси водорода. Эффективен способ нагрева растворов при температуре 116°С в течение 20 мин с добавкой 0,04 моля перекиси водорода.
Ряд методов основан на применении раствора перманганата калия. Рекомендуется прибавлять к раствору небольшое количество гипохлорита (щавелевой воды): на 1 л добавляют 0,25 мл раствора гипохлорида натрия с содержанием активного хлора около 0,5%, смесь выдерживают 30 мин. Избыток гипохлорида удаляют с помощью активированного угля, которого берут из расчета 15% от объема воды. Для удаления пирогенов предлагается также обрабатывать растворы п-хиноном и антрахиноном, которые образуют с пирогенами комплексные соединения.
Для уничтожения пирогенных веществ можно использовать подогрев раствора с 0,1 н раствором едкого натра или 0,1 н раствором соляной кислоты (при рН 4,0) в течение 1 ч. При этом происходит гидролитическое расщепление пирогенов с образованием моносахаридов, не обладающих пирогенными свойствами. Расход кислоты и щелочи при этом очень велик, в связи с чем этот метод неэкономичен.
Из-за возможного взаимодействия компонентов, химический и энзиматический методы мало приемлемы при промышленном изготовлении растворов для инъекций.
Физико-химические методы. Физико-химические методы основываются на явлении адсорбции пирогенов активированным углем, каолином, асбестом, целлюлозой и т.п. Количество пирогенных веществ уменьшается после обработки активированным углем путем встряхивания в течение 15 мин, при этом эффективность очистки зависит от природы пирогенных веществ. Гранулированный уголь менее эффективен. Уголь, применяемый для очистки растворов, должен быть весьма тщательно очищен, хорошо промыт водой, не содержать пирогенов и высушен при температуре 250°С в течение 2 ч. Однако, обработка растворов активированным углем не всегда приводит к полной депирогенизации. Кроме того, этот метод нельзя применять для очистки растворов лекарственных веществ, легко адсорбируемых углем, например, солей алкалоидов или легко окисляемых, например, аскорбиновой кислоты.
Ряд авторов рекомендует для очистки от пирогенов использовать ионообменные смолы (например, для аминокислот), считая, что они более эффективны, чем активированный уголь. Депирогенизацию воды можно осуществить путем фильтрования через бактериальный фильтр Зейтца. Размер пор многих бактериальных фильтров такой же, как у фильтра Зейтца, но они не пригодны для удаления пирогенных веществ, поэтому нельзя объяснить эффективность удаления пирогенных веществ только малым диаметром пор. Рекомендуется, чтобы диаметр пор фильтра Зейтца не превышал 2,4 мкм. Фильтр Зейтца задерживает пирогенные вещества из раствора на 99,5%, даже когда они находятся в значительном количестве. Чем меньше концентрация пирогенных веществ в растворе, тем лучше они задерживаются на фильтре.
Обработка раствора активированным углем с последующим фильтрованием через фильтр Зейтца обеспечивает более полное удаление пирогенных веществ.
Для удаления пирогенных веществ из растворов аминокислот, применяемых для внутривенного вливания, предлагается их автоклавирование при температуре 120°С в течение 2-3 часов в атмосфере азота.
Уменьшение пирогенных веществ происходит при термической стерилизации в течение 20 мин при 120°С, а при 140°С в течение 20 мин наступает их инактивация. Полное уничтожение пирогенных веществ достигается стерилизацией в сушильном шкафу при температуре 200°С в течение 45 мин. или при 250°С в течение 30 мин. При температуре 120°С пирогенность уменьшается в процессе автоклавирования на следующие величины: в течение 30 мин на 25%, в течение 1 ч на 70%, в течение 2 ч на 95%, в течение 4 ч на 100%.
К физико-химическим методам удаления пирогенов из растворов следует отнести уничтожение их с помощью ультразвука с частотой 2 МГц и интенсивностью 2 вт/см2 в течение 10 мин. При этом достигается полное разрушение пирогенных веществ. В то же время ультразвук в 800 МГц и интенсивностью 1,5 вт/см2 в течение 5-10 мин незначительно снижает пирогенность воды. При действии ультразвука рН воды изменяется на ±0,75.
Государственным научным центром лекарственных средств совместно с отделом биохимических методов очистки воды АН Украины (Ф.А.Конев, Т.П.Скубко, П.И.Гвоздяк) предложен оригинальный фильтр для получения апирогенной воды. Действие фильтра основано на удерживании микроорганизмов диэлектрическими материалами в электрическом поле, силовые линии которого направлены перпендикулярно к движению потока стерилизуемой жидкости.
Срок использования воды для инъекций регламентируется 24 часами с момента получения, при условии ее хранения в асептических условиях. При более длительном хранении вода поглощает из воздуха углерода диоксид и кислород, может взаимодействовать с материалом используемой емкости, вызывая переход ионов тяжелых металлов, и является средой для размножения микроорганизмов. Поэтому наиболее предпочтительным является использование свежеприготовленной воды, которую иногда непосредственно после дистилляции кипятят в течение 30 минут.
Более надежное хранение гарантируется специальными системами, выполненными из инертного материала, в которых вода находится при высокой температуре и в постоянном движении.
