- •Содержание учебника
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 2. Таблетки (Tabulettae)
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •Глава 5. Лекарственные средства для парентерального применения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты Общие сведения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •1.1. Теоретические основы экстрагирования
- •1.2. Особенности экстрагирования из растительного сырья с клеточной структурой
- •1.3. Стадии процесса экстрагирования и их количественные характеристики
- •1.4. Основные факторы, влияющие на полноту и скорость экстрагирования
- •1.5. Требования к экстрагентам
- •1.6. Настойки
- •5.6.1. Способы приготовления
- •5.6.1.1. Мацерация
- •1.6.1.2. Перколяция
- •1.6.1.3. Растворение густых или сухих экстрактов
- •1.6.2. Стандартизация
- •1.6.3. Хранение настоек
- •1.6.4. Классификация и номенклатура настоек
- •Настойки простые.
- •Настойки сложные.
- •1.6.5. Рекуперация экстрагентов из отработанного сырья
- •1.7. Экстракты
- •1.7.1. Жидкие экстракты
- •1.7.2. Способы получения
- •1.7.3. Очистка
- •1.7.4. Стандартизация
- •1.7.5. Номенклатера жидких экстрактов
- •1.7.6. Хранение
- •1.8. Густые и сухие экстракты
- •1.8.1. Способы получения
- •2) Очистка вытяжки;
- •3) Сгущение вытяжки;
- •2) Очистка вытяжки;
- •1.8.1.1. Получение вытяжек
- •Экстрагирование с использованием электроплазмолиза и электродиализа
- •1.8.1.2. Очистка вытяжки
- •1.8.1.3. Сгущение вытяжки.
- •5.8.1.4. Высушивание вытяжки
- •1.8.2. Стандартизация
- •1.8.3. Номенклатура густых и сухих экстрактов (по Государственному реестру ) и основные их показатели (по гф и вфс) Густые экстракты
- •Сухие экстракты а. С нелимитированным верхним пределом действующих веществ
- •Б. С лимитированным верхним пределом действующих веществ
- •1.8.4. Хранение
- •1.9. Экстракты-концентраты
- •1.10. Масляные экстракты
- •Глава 2. Таблетки (Tabulettae)
- •2.1. Определение таблеток как лекарственной формы
- •2.2. Характеристика таблеток
- •2.3. Классификация таблеток
- •2.4. Свойства порошкообразных лекарственных субстанций
- •2.4.1. Физико-химические свойства
- •2.4.2. Технологические свойства
- •2.5. Основные группы вспомогательных веществ в производстве таблеток
- •2.6. Технологический процесс производства таблеток
- •2.6.1. Прямое прессование
- •2.6.2. Гранулирование
- •2.7. Типы таблеточных машин
- •2.8. Факторы, влияющие на основные качества таблеток – механическую прочность, распадаемость и среднюю массу
- •2.9. Влияние вспомогательных веществ и вида грануляции на биодоступность лекарственных веществ из таблеток
- •2.10. Покрытие таблеток оболочками
- •2.10.1. Прессованные покрытия
- •2.10.2. Пленочные покрытия
- •2.10.3. Способы нанесения пленочных покрытий
- •2.11. Тритурационные таблетки
- •2.12. Контроль качества таблеток
- •2.13. Фасовка, упаковка и маркировка таблеток
- •2.14. Условия хранения таблеток
- •2.15. Пути совершенствования таблеток
- •2.15.1. Многослойные таблетки
- •2.15.2. Таблетки с нерастворимым скелетом
- •2.15.3. Таблетки с ионитами
- •2.16. Гранулы. Микродраже. Спансулы. Драже
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Общие сведения
- •3.1. Современная классификация и общая характеристика
- •В нашей стране номенклатура капсулированных препаратов находится на стадии 3.2. Характеристика основных и вспомогательных веществ
- •3.3. Производство желатиновых капсул
- •3.4. Мягкие желатиновые капсулы
- •Метод прессования
- •3.5. Твердые желатиновые капсулы
- •3.6. Автоматы для наполнения капсул
- •Методы инкапсулирования
- •3.7. Контроль качества
- •3.8. Факторы, влияющие на биологическую доступность лекарственных веществ в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •4.1. Общие сведения
- •4.2. Современные требования к мазям
- •4.3. Требования, предъявляемые к мазевым основам
- •4.4. Классификация мазевых основ
- •4.5. Технология производства мазей на фармацевтических предприятиях
- •4.6. Стандартизация мазей
- •4.7. Фасовка и упаковка мазей
- •Последовательность работы тубонаполнительных машин
- •4.8. Хранение
- •4.9. Перспективы развития промышленного производства мазей
- •Глава 5. Лекарственные средства для парентерального применения
- •5.1. Общая характеристика. Классификация. Требования
- •5.2. Создание условий к производству стерильной продукции
- •Общие требования к производству стерильной продукции. Классы чистоты помещений
- •Требования к производственным помещениям и чистоте воздушной среды
- •Обеспечение производственных помещений чистым воздухом
- •Требования, предъявляемые к персоналу и спецодежде
- •Требования к технологическому процессу
- •Требования к технологическому оборудованию
- •Требования к контролю качества
- •5.3. Производство ампул в заводских условиях
- •Ампулы как вместилища для инъекционных растворов
- •Стекло для инъекционных растворов. Получение, технические требования
- •Химическая стойкость стекла
- •Классы и марки ампульного стекла
- •Определение основных показателей ампульного стекла
- •Изготовление ампул на полуавтоматах
- •5.4. Подготовка ампул к наполнению
- •Способы мойки ампул
- •Сушка и стерилизация ампул
- •5.5. Требования к исходным веществам
- •5.6. Водоподготовка Сведения о водопроводной воде
- •Получение деминерализованной воды
- •Получение воды очищенной (дистиллированной). Требования, предъявляемые к ней
- •5.7. Растворители для стерильных и асептически приготовленных лекарственных средств
- •Получение воды для инъекций в промышленных условиях
- •Оборудование для получения воды очищенной и воды для инъекций
- •Сведения о пирогенности
- •Методы обнаружения пирогенов
- •Методы удаления пирогенных веществ
- •Неводные растворители
- •5.8. Приготовление растворов для инъекций
- •Изотонирование инъекционных растворов
- •Стабилизация растворов
- •Механизм действия стабилизаторов
- •Теории окислительно-восстановительных процессов
- •1. Стабилизация растворов глюкозы
- •2. Стабилизация раствора аскорбиновой кислоты
- •3. Стабилизация 5, 10 и 20% растворов новокаина
- •Фильтрация инъекционных растворов Источники механических загрязнений инъекционных растворов
- •Конструкции фильтрующих установок, используемых в производстве инъекционных растворов
- •5.9. Ампулирование
- •Наполнение ампул раствором
- •Оборудование для наполнения ампул
- •Оборудование для запайки ампул
- •Аппарат для запайки ампул типа ап-6м
- •Машина для запайки ампул с инертной средой типа 432
- •5.10. Методы стерилизации
- •Механические методы стерилизации
- •Химические методы стерилизации
- •Физические методы стерилизации
- •5.11. Методы контроля качества инъекционных растворов
- •5.12. Маркировка и упаковка
- •5.13. Особенности производства некоторых инъекционных лекарственных форм
Получение воды для инъекций в промышленных условиях
Согласно требованиям ФС 42-2620-89 вода для инъекций (Aqwa pro ingectionibus) должна удовлетворять всем требованиям, предъявляемым к воде очищенной, а также должна быть стерильной и апирогенной. Стерильность воды определяется методами, изложенными в статье «Испытания на стерильность» ГФ ХI издания, с. 187-192. Испытание пирогенности воды проводят биологическим методом, приведенным в статье «Испытание на пирогенность» ГФ ХI издания, с. 183-185.
Оборудование для получения воды очищенной и воды для инъекций
В промышленных условиях получение воды для инъекций и воды очищенной осуществляют с помощью высокопроизводительных корпусных аппаратов, термокомпрессионных дистилляторов различных конструкций и установок обратного осмоса.
Одним из представителей колонных многокамерных аппаратов являются многоступенчатые аппараты. Установки подобного типа для получения очищенной воды бывают различной конструкции. Производительность крупных моделей достигает 10 т/час.
Чаще всего применяются трехступенчатые колонные аппараты с тремя корпусами (испарителями), расположенными вертикально или горизонтально. Особенностью колонных аппаратов является то, что только первый испаритель нагревается паром, вторичный пар из первого корпуса поступает во второй в качестве греющего, где конденсируется и получается дистиллированная вода. Из второго корпуса вторичный пар поступает в третий – в качестве греющего, где также конденсируется. Таким образом, дистиллированную воду получают из ІІ и ІІІ корпусов. Производительность такой установки до 10 т/ч дистиллята. Качество получаемого дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено удаление капельной фазы из пара с помощью сепараторов.
Для обеспечения апирогенности получаемой воды необходимо создать условия, препятствующие попаданию пирогенных веществ в дистиллят. Эти вещества нелетучи и не перегоняются с водяным паром. Загрязнение ими дистиллята происходит путем переброса капелек воды или уноса их струей пара в холодильник. Поэтому конструктивным решением вопроса повышения качества дистиллята является применение дистилляционных аппаратов соответствующих конструкций, в которых исключена возможность переброса капельно-жидкой фазы через конденсатор в сборник. Это достигается устройством специальных ловушек и отражателей, высоким расположением паропроводов по отношению к поверхности парообразования. Целесообразно также регулировать обогрев испарителя, обеспечивая равномерное кипение и оптимальную скорость парообразования, т.к. чрезмерный нагрев ведет к бурному кипению и перебросу капельной фазы. Проведение водоподготовки путем обессоливания также уменьшает пенообразование и, следовательно, выделение капелек воды в паровую фазу.
На некоторых химико-фармацевтических предприятиях воду для инъекций получают с помощью дистиллятора "Mascarini" – производительность этого аппарата 1500 л/час. Он обеспечен прибором контроля чистоты воды, бактерицидными лампами, воздушными фильтрами, прибором для удаления пирогенных веществ, а также с помощью установки двойной дистилляции воды производительностью 3000 л/час.
Трехкорпусной аквадистиллятор «Финн-аква» (Финляндия) функционирует за счет использования деминерализованной воды (рис. 5.14).
Рис. 5.14. Аквадистиллятор «Финн-аква» 1 – регулятор давления; 2 – конденсатор-холодильник; 3 – теплообменник камер предварительного нагрева; 4 – парозапорное устройство; 5 – зона испарения; 6, 7, 8 – труба; 9 – теплообменник
Вода поступает через регулятор давления в конденсатор, проходит теплообменники камер предварительного нагрева, а после нагревания поступает в зону испарения, состоящую из системы трубок, обогреваемых внутри греющим паром. Нагретая вода подается на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним и нагревается до кипения.
В испарителе за счет поверхности кипящих пленок создается интенсивный поток пара, который движется снизу вверх со скоростью 20-60 м/с. Центробежная сила, возникающая при этом, обеспечивает стекание капель в нижнюю часть корпуса, прижимая их к стенкам.
Наиболее совершенными в настоящее время являются термокомпрессионные дистилляторы (рис. 5.15), конструкция которых разработана итальянской фирмой «Вопарасе». Их преимущество перед дистилляторами других типов заключается в том, что для получения 1 л воды для инъекций необходимо израсходовать 1,1 л холодной водопроводной воды. В других аппаратах это соотношение составляет 1/9-1/15. Принцип работы аппарата заключается в том, что образующийся в нем пар, перед тем как поступить в конденсатор, проходит через компрессор и сжимается. При охлаждении и конденсации он выделяет тепло, по величине соответствующей скрытой теплоте парообразования, которая затрачивается на нагревание охлаждающей воды в верхней части трубчатого конденсатора. Питание аппарата водой осуществляется в направлении снизу вверх, выход дистиллятора – сверху вниз. Производительность дистиллятора до 2,5 т/час. Качество получаемой апирогенной воды высокое, так как капельная фаза испаряется на стенках трубок испарителя.
Рис. 5.15. Принцип работы работы термокомпрессионого дистиллятора 1 – конденсатор-холодильник; 2 – паровое пространство; 3 – компрессор; 4 – регулятор давления; 5 – камера предварительного нагрева; 6 – трубки испарителя.
Нагревание и кипение в трубках происходит равномерно, без перебросов, в тонком слое. Задерживанию капель из пара способствует также высота парового пространства. Недостатками являются сложность устройства и эксплуатации.
Наиболее широко распространенным до последних лет методом получения воды для инъекций была дистилляция. Такой метод требует затрат большого количества энергии, что является большим недостатком. Среди других недостатков следует отметить громоздкость оборудования и большую занимаемую им площадь; возможность присутствия в воде пирогенных веществ; сложность обслуживания.
Этих недостатков лишены методы мембранного разделения. Новые методы разделения через мембрану, все больше внедряемые в производство, протекают без фазовых превращений и требуют для своей реализации значительно меньших затрат энергии. Эти затраты сопоставимы с минимальной теоретически определяемой энергией разделения.
Мембранные методы очистки основаны на свойствах перегородки (мембраны), обладающей селективной проницаемостью, благодаря чему возможно разделение без химических и фазовых превращений.
Для получения воды для инъекций в практическом отношении представляют интерес следующие аппараты.
С использованием принципа мембранной очистки работает установка высокоочищенной воды «Шарья-500». Производительность ее по питающей воде 500 л/ч. получаемая после этой установки высокоочищенная вода свободная от механических примесей, органических и неорганических веществ. Она применяется в производстве иммунобиологических бактерийных препаратов и для приготовления инъекционных растворов.
Установка (УВВ) включает блоки предфильтрации, обратного осмоса и финишной очистки.
Блок фильтрации предназначен для очистки питьевой водопроводной воды от механических примесей размером 5 мкм и включает фильтр катионитный и два фильтра угольных, работающих параллельно или взаимозаменяемо.
Блок обратного осмоса работает при давлении не ниже 15 атм. Поступающая на блок вода разделяется после фильтрования на два потока: один из которых проходит сквозь обратноосмотические мембраны, а второй поток, проходящий вдоль поверхности мембраны, и содержащий повышенное количество солей (концентрат) отводится из установки. Для нормальной работы данного блока необходимо, чтобы соотношение объемов воды на подаче, сливе и проходящей через мембрану составляло 3:2:1 соответственно. Таким образом, для получения 1 литра высокоочищенной воды необходимо израсходовать приблизительно 3 литра воды водопроводной. При этом скорость слива достаточно высокая, что устраняет вредное влияние концентрированной поляризации на работу установки.
В блоке обратноосмотическом осуществляется очистка воды от растворимых солей, органических примесей, твердых взвесей и бактерий. Качество воды контролируется по удельному сопротивлению с помощью кондуктометра.
После блока обратного осмоса вода поступает на блок финишной очистки, включающей ионообмен и ультрафильтрацию. Ионообменная очистка воды осуществляется с помощью последовательно соединенных фильтров – катионного и анионного, за которыми установлен смешанный катионно-анионный фильтр, где происходит очистка от оставшихся катионов и анионов.
Окончательная доочистка воды проводится в двух ультрафильтрационных аппаратах с полыми волокнами АР-2,0, предназначенных для отделения органических микропримесей (коллоидных частиц и макромолекул).
Для производства иммунных и бактерийных препаратов не всегда пригодна вода для инъекций, полученная дистилляцией. Поэтому часто возникает необходимость в доочистке воды, которая может быть проведена с помощью установки «Супер-Кью». Производительность – 720 л/ч. вода пропускается через угольный фильтр, где происходит освобождение от органических веществ; затем – через смешанный слой ионотов; после чего поступает на патронный бактериальный фильтр с размером пор 0,22 нм (0,00022 мкм). Далее вода поступает на обратноосмотический модуль, где происходит удаление пирогенных веществ. Полученную воду используют для приготовления инъекционных лекарственных форм, а концентрат используют как техническую воду или повторно отправляют на очистку.
Мембранные методы получения высокоочищенной воды для инъекций широко используются в мировой практике и признаны экономически выгодными и перспективными.
