- •Содержание учебника
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 2. Таблетки (Tabulettae)
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •Глава 5. Лекарственные средства для парентерального применения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты Общие сведения
- •Глава 1. Производство экстракционных препаратов. Настойки. Экстракты
- •1.1. Теоретические основы экстрагирования
- •1.2. Особенности экстрагирования из растительного сырья с клеточной структурой
- •1.3. Стадии процесса экстрагирования и их количественные характеристики
- •1.4. Основные факторы, влияющие на полноту и скорость экстрагирования
- •1.5. Требования к экстрагентам
- •1.6. Настойки
- •5.6.1. Способы приготовления
- •5.6.1.1. Мацерация
- •1.6.1.2. Перколяция
- •1.6.1.3. Растворение густых или сухих экстрактов
- •1.6.2. Стандартизация
- •1.6.3. Хранение настоек
- •1.6.4. Классификация и номенклатура настоек
- •Настойки простые.
- •Настойки сложные.
- •1.6.5. Рекуперация экстрагентов из отработанного сырья
- •1.7. Экстракты
- •1.7.1. Жидкие экстракты
- •1.7.2. Способы получения
- •1.7.3. Очистка
- •1.7.4. Стандартизация
- •1.7.5. Номенклатера жидких экстрактов
- •1.7.6. Хранение
- •1.8. Густые и сухие экстракты
- •1.8.1. Способы получения
- •2) Очистка вытяжки;
- •3) Сгущение вытяжки;
- •2) Очистка вытяжки;
- •1.8.1.1. Получение вытяжек
- •Экстрагирование с использованием электроплазмолиза и электродиализа
- •1.8.1.2. Очистка вытяжки
- •1.8.1.3. Сгущение вытяжки.
- •5.8.1.4. Высушивание вытяжки
- •1.8.2. Стандартизация
- •1.8.3. Номенклатура густых и сухих экстрактов (по Государственному реестру ) и основные их показатели (по гф и вфс) Густые экстракты
- •Сухие экстракты а. С нелимитированным верхним пределом действующих веществ
- •Б. С лимитированным верхним пределом действующих веществ
- •1.8.4. Хранение
- •1.9. Экстракты-концентраты
- •1.10. Масляные экстракты
- •Глава 2. Таблетки (Tabulettae)
- •2.1. Определение таблеток как лекарственной формы
- •2.2. Характеристика таблеток
- •2.3. Классификация таблеток
- •2.4. Свойства порошкообразных лекарственных субстанций
- •2.4.1. Физико-химические свойства
- •2.4.2. Технологические свойства
- •2.5. Основные группы вспомогательных веществ в производстве таблеток
- •2.6. Технологический процесс производства таблеток
- •2.6.1. Прямое прессование
- •2.6.2. Гранулирование
- •2.7. Типы таблеточных машин
- •2.8. Факторы, влияющие на основные качества таблеток – механическую прочность, распадаемость и среднюю массу
- •2.9. Влияние вспомогательных веществ и вида грануляции на биодоступность лекарственных веществ из таблеток
- •2.10. Покрытие таблеток оболочками
- •2.10.1. Прессованные покрытия
- •2.10.2. Пленочные покрытия
- •2.10.3. Способы нанесения пленочных покрытий
- •2.11. Тритурационные таблетки
- •2.12. Контроль качества таблеток
- •2.13. Фасовка, упаковка и маркировка таблеток
- •2.14. Условия хранения таблеток
- •2.15. Пути совершенствования таблеток
- •2.15.1. Многослойные таблетки
- •2.15.2. Таблетки с нерастворимым скелетом
- •2.15.3. Таблетки с ионитами
- •2.16. Гранулы. Микродраже. Спансулы. Драже
- •Глава 3. Лекарственные формы в желатиновых капсулах
- •Общие сведения
- •3.1. Современная классификация и общая характеристика
- •В нашей стране номенклатура капсулированных препаратов находится на стадии 3.2. Характеристика основных и вспомогательных веществ
- •3.3. Производство желатиновых капсул
- •3.4. Мягкие желатиновые капсулы
- •Метод прессования
- •3.5. Твердые желатиновые капсулы
- •3.6. Автоматы для наполнения капсул
- •Методы инкапсулирования
- •3.7. Контроль качества
- •3.8. Факторы, влияющие на биологическую доступность лекарственных веществ в желатиновых капсулах
- •Глава 4. Мази
- •4.8. Хранение
- •4.1. Общие сведения
- •4.2. Современные требования к мазям
- •4.3. Требования, предъявляемые к мазевым основам
- •4.4. Классификация мазевых основ
- •4.5. Технология производства мазей на фармацевтических предприятиях
- •4.6. Стандартизация мазей
- •4.7. Фасовка и упаковка мазей
- •Последовательность работы тубонаполнительных машин
- •4.8. Хранение
- •4.9. Перспективы развития промышленного производства мазей
- •Глава 5. Лекарственные средства для парентерального применения
- •5.1. Общая характеристика. Классификация. Требования
- •5.2. Создание условий к производству стерильной продукции
- •Общие требования к производству стерильной продукции. Классы чистоты помещений
- •Требования к производственным помещениям и чистоте воздушной среды
- •Обеспечение производственных помещений чистым воздухом
- •Требования, предъявляемые к персоналу и спецодежде
- •Требования к технологическому процессу
- •Требования к технологическому оборудованию
- •Требования к контролю качества
- •5.3. Производство ампул в заводских условиях
- •Ампулы как вместилища для инъекционных растворов
- •Стекло для инъекционных растворов. Получение, технические требования
- •Химическая стойкость стекла
- •Классы и марки ампульного стекла
- •Определение основных показателей ампульного стекла
- •Изготовление ампул на полуавтоматах
- •5.4. Подготовка ампул к наполнению
- •Способы мойки ампул
- •Сушка и стерилизация ампул
- •5.5. Требования к исходным веществам
- •5.6. Водоподготовка Сведения о водопроводной воде
- •Получение деминерализованной воды
- •Получение воды очищенной (дистиллированной). Требования, предъявляемые к ней
- •5.7. Растворители для стерильных и асептически приготовленных лекарственных средств
- •Получение воды для инъекций в промышленных условиях
- •Оборудование для получения воды очищенной и воды для инъекций
- •Сведения о пирогенности
- •Методы обнаружения пирогенов
- •Методы удаления пирогенных веществ
- •Неводные растворители
- •5.8. Приготовление растворов для инъекций
- •Изотонирование инъекционных растворов
- •Стабилизация растворов
- •Механизм действия стабилизаторов
- •Теории окислительно-восстановительных процессов
- •1. Стабилизация растворов глюкозы
- •2. Стабилизация раствора аскорбиновой кислоты
- •3. Стабилизация 5, 10 и 20% растворов новокаина
- •Фильтрация инъекционных растворов Источники механических загрязнений инъекционных растворов
- •Конструкции фильтрующих установок, используемых в производстве инъекционных растворов
- •5.9. Ампулирование
- •Наполнение ампул раствором
- •Оборудование для наполнения ампул
- •Оборудование для запайки ампул
- •Аппарат для запайки ампул типа ап-6м
- •Машина для запайки ампул с инертной средой типа 432
- •5.10. Методы стерилизации
- •Механические методы стерилизации
- •Химические методы стерилизации
- •Физические методы стерилизации
- •5.11. Методы контроля качества инъекционных растворов
- •5.12. Маркировка и упаковка
- •5.13. Особенности производства некоторых инъекционных лекарственных форм
Химическая стойкость стекла
Химическая стойкость характеризует сопротивляемость стекол разрушающему действию агрессивных сред.
Присутствие катионов щелочных металлов вызывает разрыхление тетраэдрической решетки, понижение вязкости и температуры его плавления. Ионы этих металлов в стекле связаны относительно слабо и поэтому обладают значительной подвижностью. Стекло, будучи сложным сплавом, при длительном контакте с водой или водными растворами (особенно при нагревании) выделяет со своей поверхности отдельные составные части, т.е. подвергается процессу выщелачивания или растворению верхнего слоя стекла.
Выщелачивание – это переход из структуры стекла преимущественно оксидов щелочных и щелочноземельных металлов в водный раствор, благодаря своей высокой подвижности по сравнению с высоким зарядом четырехвалентного кремния. При более глубоких процессах выщелачивания ионы щелочных металлов легко перемещаются из внутренних слоев стекла на место ионов, вступивших в реакцию.
Механизм взаимодействия раствора с поверхностью ампул можна представить следующим образом: на поверхности стекла всегда имеется слой, насыщенный ионами щелочных и щелочноземельных металлов. При контакте слобокислых и нейтральных растворов, слой адсорбирует ионы водорода, а в раствор переходят ионы металлов, которые изменяют рН среды. В результате образуется гелевая пленка кремниевой кислоты, толщина которой постепенно увеличивается, что затрудняет выход ионов металлов из внутренних слоев стекла. В связи с этим процесс выщелачивания, начавшийся быстро, постепенно затухает и прекращается примерно через 8 месяцев.
При воздействии щелочных растворов пленка не образуется, а происходит растворение поверхностного слоя стекла с разрывом связи Si–O–Si и образованием групп Si–O–Na. В результате такого воздействия самый верхний слой стекла полностью переходит в раствор, подвергается гидролизу и приводит к изменению рН раствора.
Важно также учитывать удельную поверхность контакта раствора со стеклом ампулы. Так, в мелкоемких ампулах она больше, поэтому их химическая стойкость должна быть более высокой.
При этом возможны следующие явления:
выпадение свободных оснований алкалоидов из их солей;
осаждение веществ из коллоидных растворов в результате изменения рН;
осаждение гидроокисей или окислов металлов из их солей;
гидролиз сложных эфиров, гликозидов и алкалоидов, имеющих сложноэфирное строение (атропин, скополамин и др.);
оптическая изомеризация активных веществ с образованием физиологически неактивных изомеров, например, алкалоидов спорыньи;
окисление веществ, чувствительных к действию кислорода в нейтральной или слабощелочной среде, например, морфина, адреналина и др.
Выщелачивание из стекла ионов кальция может привести к образованию осадков труднорастворимых кальциевых солей. Такое явление наблюдается в растворах, содержащих фосфаты (в случае использования буферов) или кислый сульфит, пиросульфит натрия (добавляемые ингибиторы окисления). В последнем случае после окисления ионов сульфита до сульфата образуются кристаллы гипса.
Известны случаи выделения чистого кремнезема в виде кристаллов и чешуек, иногда называемых блестками.
Особенно часто появляются новообразования при ампулировании солей магния, когда в осадок выпадают нерастворимые соли силикатов магния. В связи с этим для водных растворов алкалоидов и других нестойких лекарственных веществ требуются ампулы из нейтрального стекла. Для масляных растворов можно использовать ампулы из щелочного стекла.
Химическую стойкость внутренней поверхности ампул можно повысить, изменив ее поверхностную структуру. При воздействии на стекло водяным паром или двуокисью серы и водяным паром при повышенной температуре на стекле образуется слой сульфата натрия, а ионы натрия в стекле частично заменяются водородными ионами. Обогащенный Н-ионами слой имеет повышенную механическую прочность и затрудняет дальнейшую диффузию ионов щелочных металлов. Однако такие слои имеют небольшую толщину и при длительном хранении препарата в ампуле процесс выделения щелочи может возобновиться.
Наиболее часто применим способ обработки поверхности ампул силиконами. Силиконы – кремнийорганические соединения следующего строения:
Отдельные цепочки могут соединяться кислородными мостиками, образуя двумерные и трехмерные полимерные решетки. Характерной особенностью силиконов является их химическая нейтральность и физиологическая безвредность.
В фармацевтической промышленности используют для покрытия стекла готовые полимеры в виде растворов или эмульсий. При погружении очищенного стекла в 0,5-2% раствор силиконового масла в органическом растворителе или в эмульсию силиконового масла, разбавленные водой в соотношении 1:50-1:10000, происходит абсорбция молекул масла на поверхности стекла. Для получения прочной пленки сосуды нагревают в течение 3-4 часов при температуре 250°С или полчаса при температуре 300-350°С. Более простой способ – обработка ампул водной эмульсией силикона с последующей сушкой в течение 1-2 часов при 240°С.
Силиконы способны покрывать стекло пленкой толщиной 6×10–7 мм, обработанная поверхность становится гидрофобной, прочность изделия повышается. Наряду с положительными сторонами силиконирования стеклянных изделий, имеются и отрицательные. Силиконовая пленка несколько понижает миграцию щелочи из стекла, но не обеспечивает достаточной защиты стекла от коррозии. С помощью силикона нельзя предотвратить коррозию низкосортного стекла, т.к. одновременно со стеклом подвергается воздействию среды и тонкая силиконовая пленка. При запайке капилляров возможно разрушение пленки силикона, что может привести к образованию в инъекционном растворе взвеси.
Существуют и другие пути устранения процесса выщелачивания:
использование неводных растворителей;
раздельное ампулирование лекарственного вещества и растворителя;
обезвоживание препаратов;
замещение стекла другими материалами.
Однако силиконизированные и пластмассовые ампулы до сих пор не нашли широкого применения у нас в стране.
Таким образом, перечисленные выше факторы влияют на стабильность инъекционных растворов в ампулах.
