Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Семестровая 7.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
7.03 Mб
Скачать

Характеристики точности

Под точностью понимается величина случайных ошибок. Сравнительный анализ точности имеет смысл только для адекватных моделей: среди них лучшей признается модель с меньшими значениями характеристик точности, к которым относятся:

- максимальная ошибка соответствует максимальному отклонению расчетных значений от фактических;

- средняя абсолютная ошибка

- остаточная дисперсия

- средняя квадратическая ошибка

показывает, насколько в среднем отклоняются фактические значения от модели;

Средняя квадратическая ошибка является наиболее часто используемой характеристикой точности (что объясняется ее связью с остаточной дисперсией, которая играет центральную роль в регрессионном анализе). Значение средней квадратической ошибки всегда несколько больше значения средней абсолютной ошибки, но они имеют схожий смысл – характеризуют среднюю удаленность расчетных значений модели от фактических исходных данных. Обычно точность модели признается удовлетворительной если выполняется условие:

.

= 3,36 ≤ 5%

К характеристикам точности можно отнести также множественный коэффициент детерминации

= 0,98

характеризующий долю дисперсии зависимой переменной, объясненной с помощью регрессии, и множественный коэффициент корреляции (индекс корреляции):

= 0,96

В случае парной линейной регрессии значение множественного коэффициента корреляции совпадает с линейным коэффициентом корреляции.

В связи с тем, что каждый из относительных показателей формы распределения меньше 1,5 эмпирическое распределение ряда остатков не противоречит нормальному.

Проверка адекватности модели

Проверка адекватности модели заключается в определении ее значимости и наличии или отсутствии систематической ошибки.

Проверка значимости модели

Сначала проверяется значимость параметров уравнения. Если, например, параметр является незначимым, то необходимо с помощью метода наименьших квадратов получить соответствующее уравнение из которого определяется значение параметра .

Проверка значимости осуществляется на основе t – критерия Стьюдента, т.е. проверяется гипотеза о том, что параметр, измеряющий связь, равен нулю.

Средняя ошибка параметра равна:

а для параметра :

Расчетные значения t- критерия вычисляются по формуле:

= 23,78

Параметр считается значимым, если

23,78 < 2,01 Параметр значимый

Параметр лежит в пределах ,

а параметр - .

Значимость уравнения регрессии в целом определяется с помощью F – критерия Фишера:

= 4,05

где - число параметров в уравнении регрессии.

Расчетное значение F сопоставляется с табличным для числа степеней свободы при заданном уровне значимости (например, ).

Если , уравнение считается значимым.

Проверка наличия или отсутствия систематической ошибки

  1. Проверка свойства нулевого среднего.

Рассчитывается среднее значение ряда остатков

= -1,06E-14

Если оно близко к нулю, то считается, что модель не содержит систематической ошибки и адекватна по критерию нулевого среднего, иначе – модель неадекватна по данному критерию. Если средняя ошибка не точно равна нулю, то для определения степени ее близости к нулю используется t – критерий Стьюдента. Расчётное значение критерия вычисляется по формуле:

= 23,78

Затем сравнивается с критическим . Если выполняется неравенство , то модель неадекватна по данному критерию.

23,78 > 2,01 Модель неадекватна по данному критерию

  1. Проверка случайности ряда остатков.

Осуществляется по методу серий. Серией называется последовательность расположенных подряд значений ряда остатков, для которых разность имеет один и тот же знак, где - медиана ряда остатков.

Если модель хорошо отражает исследуемую зависимость, то она часто пересекает линию графика исходных данных и тогда серий много, а их длина невелика. Иначе – серий мало и некоторые из них включают большое число членов.

Иногда медиана ряда остатков априорно принимается равной нулю, исходя из предположения симметричности распределения ошибок около нулевого среднего, тогда в качестве серий рассматриваются расположенные подряд ошибки с одинаковыми знаками. Далее подсчитывается число серий и длина максимальной из них . Полученные значения сравниваются с критическими:

= 5

= 11

Если выполняется система неравенств:

,

то модель признается адекватной по критерию случайности, если хотя бы одно из неравенств нарушено, то модель признается неадекватной по данному критерию.

2Правая фигурная скобка 31 0 > 5 Модель адекватна

5 < 11

  1. Проверка независимости последовательных остатков.

Является важнейшим критерием адекватности модели и осуществляется с помощью коэффициента Дарбина-Уотсона:

= 1,66

Для рядов с тесной взаимосвязью между последовательными значениями остатков значение близко к нулю, что свидетельствует о том, что закономерная составляющая не полностью отражена в модели и частично закономерность присуща ряду остатков, т.е. модель неадекватна исходному процессу.

Если последовательные остатки независимы, то близко к 2. Это свидетельствует о хорошем качестве модели и чистой фильтрации закономерной составляющей.

При отрицательной автокорреляции остатков (строго периодичном чередовании их знаков) близко к 4.

Если , то возникает предположение об отрицательной автокорреляции остатков.

  1. Проверка постоянства дисперсии остатков.

Если на графике остатков они укладываются в симметричную относительно нулевой линии полосу шириной (модуль стандартных остатков меньше 3) и не имеют как положительной так и отрицательной тенденций, то дисперсии ошибок наблюдений можно считать постоянными.

Кроме визуальной оценки постоянства дисперсии существуют и более точные методы, например, тест Гольдфельда-Квандта. Суть теста заключается в следующем. Все наблюдений упорядочиваются по возрастанию значений переменной и производится оценка параметров регрессий для первых и последних наблюдений с помощью метода наименьших квадратов. Для наибольшей мощности теста рекомендуется выбирать значение порядка Вычисляется расчётное значение статистики Фишера

где - суммы квадратов остатков для первых и последних наблюдений соответственно.

Fp = 4,25

Если то делается вывод о постоянстве дисперсии.

4,25  2,59

Дисперсия не постоянна.

По совокупности четырех критериев делается вывод о принципиальной возможности использования модели: если модель адекватна по критериям постоянства дисперсий и нулевого среднего и хотя бы по одному из двух других критериев, то она может быть принята для использования, хотя и не признается полностью адекватной.