- •Урок № 19 (11 класс)
- •1. Повторение явления самоиндукции
- •2. Энергия магнитного поля
- •3. Плотность энергии магнитного поля
- •4. Решение задач
- •5. Итоги
- •6. Электромагнитное поле
- •7. Эксперимент
- •8. Главная гипотеза Максвелла
- •9. Теория Максвелла
- •10. Ток смещения
- •11. Вихревое электрическое поле
- •Явление самоиндукции. Энергия магнитного поля
8. Главная гипотеза Максвелла
Главная гипотеза Максвелла поднимала вопрос, возможна ли обратная ситуация, когда изменяющееся электрическое поле, порождает вихревое магнитное. Опираясь на гипотезу, можно объяснить, что происходит в цепи. При замыкании цепи на источник переменного тока, помимо электрического тока, который течёт в проводах, возникает ток смещения конденсатора, который порождает точно такое же магнитное поле, как то, которое порождает ток в проводниках. Из-за переменного напряжения, соответственно, меняется напряжение на обкладках конденсатора, и, соответственно, меняется электрическое поле между обкладками конденсатора. Такое изменение электрического поля порождает вихревое магнитное поле: ток смещения замыкает разорванную цепь в диэлектрике. Основываясь на этой гипотезе, Максвелл построил теорию, объясняющую огромное количество экспериментальных фактов и кажущихся парадоксов.
9. Теория Максвелла
В основу теории Максвелла положена система его уравнений, из которой следует, что изменяющиеся в пространстве электрическое и магнитное поле тесно сцеплены друг с другом и представляют единое целое. Они распространяются в пространстве в виде поперечных волн с конечной скоростью. Неразрывная связь электрического и магнитного полей указывает на то, что они не могут существовать обособленно. Невозможно создать электрическое поле без того, чтобы вокруг него не создалось магнитное, и наоборот.
Важно отметить: о существовании постоянного электрического поля и о существовании постоянного магнитного поля можно говорить только по отношению к какой-либо выбранной инерциальной системе отсчёта. Если есть заряд, который вокруг себя создаёт постоянное электрическое поле, но относительно других инерциальных систем этот заряд может двигаться, в тех инерциальных системах помимо электрического поля будет и магнитное.
Электрическое и магнитное поле – проявление единого целого электромагнитного поля. Электромагнитное поле – это особая форма существования материи, которая выражается во взаимодействии заряжённых частиц и обнаруживает себя под действием на заряжённые частицы. Поскольку электромагнитное поле изменяет состояние заряжённых частиц, оно обладает энергией. Справедливость теории Максвелла была доказана экспериментальным обнаружением электромагнитных волн. Гипотеза Максвелла: изменяющееся во времени электрическое поле вызывает появление вихревого магнитного поля.
Согласно этой гипотезе, магнитное поле после замыкания цепи образуется не только вследствие протекания тока в проводнике, но и вследствие наличия переменного электрического поля между обкладками конденсатора. Это переменное электрическое поле порождает магнитное поле в той же области между обкладками конденсатора. Причём, это магнитное поле точно такое же, как будто бы между обкладками конденсатора протекал ток, равный току во всей остальной цепи. В основе теории лежат четыре уравнения Максвелла, из которых следует, что изменение электрического и магнитного полей в пространстве и во времени происходят согласованным образом. Так, электрическое и магнитное поле образуют единое целое. Электромагнитные волны распространяются в пространстве в виде поперечных волн с конечной скоростью.
Указанная взаимосвязь между переменным магнитным и переменным электрическим полем говорит о том, что они не могут существовать обособленно друг от друга. Возникает вопрос: касается ли это утверждение статических полей (электростатического, создаваемого постоянными зарядами, и магнитостатического, создаваемого постоянными токами)? Такая взаимосвязь существует и для статических полей. Но важно понимать, что эти поля могут существовать по отношению к определённой системе отсчёта.
Покоящийся заряд создаёт в пространстве электростатическое поле (рис. 8) относительно определённой системы отсчёта. Относительно других систем отсчёта он может двигаться и, следовательно, в этих системах этот же заряд будет создавать магнитное поле.
