Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пропущенный материал по геометрии.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.26 Mб
Скачать

2.3. Проекции векторов

Пусть в пространстве задана некоторая ось и вектор . Через точки и проведем плоскости, перпендикулярные прямой . Обозначим точки пересечения прямой и построенных плоскостей и .

Определение. Проекцией вектора на ось называется величина направленного отрезка на оси , т. е.

. (2.1)

Если направление совпадает с направлением оси , то , если же направления вектора и оси противоположны, то .

Теорема 1. Проекция вектора на ось равна длине вектора , умноженной на косинус угла между вектором и осью , т. е.

, (2.2)

где  угол между вектором и осью .

Доказательство. Если , то при проекции вектора на ось вектор является нулевым, поэтому условие (2.2) выполняется.

Если , то в силу (2.1) .

А

Если же , то в силу (2.1) .

А

Пусть задана некоторая ось и . Применяя к каждому из этих векторов формулу (2.2), получим, что , т. е. равные векторы имеют равные проекции на одну и ту же ось.

Определение. Проекции , , вектора на оси , и прямоугольной системы координат называются координатами вектора в этой системе координат.

Если для вектора , , , то символически это записывается в виде

. (2.3)

Теорема 2. Для любых двух точек и координаты вектора определяются по формулам

, , . (2.4)

Доказательство. Проведем через точки и плоскости, перпендикулярные оси , и обозначим точки пересечения оси и построенных плоскостей и .

z

B

A

y

O

x

Точки и имеют на оси координаты и . По определению , но , т. е. . Аналогично доказываются и остальные соотношения. Теорема доказана.

Рассмотрим свойства проекций векторов на ось.

Теорема 3. Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т. е.

. (2.5)

Доказательство. Пусть , тогда, приложив вектор к концу вектора , т. е. к точке , можем считать, что . Обозначим через , , проекции точек , и С на ось . По определению проекции вектора на ось имеем: , , , (последнее равенство следует из правила сложения величин вещественных чисел).

B

A

C

l

Таким образом, . Теорема доказана.

Теорема 4. При умножении вектора на число его проекция на ось также умножается на это число, т. е.

. (2.6)

Доказательство. Пусть  угол между осью и вектором , а  угол между осью и вектором . Если , то векторы и направлены одинаково и . Если же , то векторы и имеют противоположное направление и .

Согласно (2.2) при имеем: . Если же , то . При обе части равенства (2.6) обращаются в нуль. Таким образом, при любых вещественных значениях . Теорема доказана.

Из этой теоремы вытекает следствие.

Следствие. Если векторы и заданы своими координатами, т. е. , , то при любых действительных числах и вектор имеет координаты

. (2.7)

Пусть  углы наклона вектора к осям , и соответственно.

Определение. Три числа , и называются направляющими косинусами вектора .

Из определения координат вектора следует, что если , то

, , . (2.8)

Так как является диагональю прямоугольного параллелепипеда со сторонами, которые отсекают на координатных осях величины , и , то

. (2.9)

Из формул (2.8) и (2.9) находятся выражения для направляющих косинусов вектора через его координаты:

, , . (2.10)

Возводя полученные равенства в квадрат и складывая, получим, что , т. е. сумма квадратов направляющих косинусов любого вектора равна единице.

Так как вектор однозначно определяется заданием трех его координат, из полученных формул (2.8) следует, что вектор однозначно определяется заданием его длины и трех направляющих косинусов.

П р и м е р 22. Даны два вектора и . Найти проекции на координатные оси векторов и .

Решение. Проекциями вектора на координатные оси являются его координаты. По формуле (2.7) получим: , .