- •Кодоминирование и неполное доминирование[править | править вики-текст]
- •Кодоминирование и неполное доминирование
- •Условия выполнения законов Менделя
- •Условия выполнения закона расщепления при моногибридном скрещивании
- •Условия выполнения закона независимого наследования[
- •Условия выполнения закона чистоты гамет
- •Более обширное объяснение:
- •Генетическая схема хромосомного определения пола у человека:
- •Генетическая схема хромосомного определения пола у дрозофилы:
- •Генетическая схема хромосомного определения пола у пустынной саранчи:
- •Генетическая схема хромосомного определения пола у голубя:
- •Классификация мутаций.
- •Классификация полиплоидов.
- •Ее особенности и значение.
- •52. Отдаленная гибридизация. Ее особенности и значение.
- •53. Проблемы нескрещиваемости при отдаленной гибридизации и способы преодоления
- •54. Проблемы нежизнеспособности гибридного потомства при отдаленной гибридизации, способы преодоления.
- •55. Соматическая гибридизация, ее особенности
- •57. Преодоление бесплодия путем увеличения числа хромосом
- •58.Колхицин, его действие.
- •60. Гетерозис. Особенности проявления. Теории гетерозисного эффекта
- •61. Понятие популяции. Генетическая структура популяции.
- •Вопрос 64.
- •Вопрос 65.
- •Вопрос 66.
- •Вопрос 67.
- •Вопрос 68.
- •Вопрос 69. Транскрипция
- •Вопрос 70. Полипептидный синтез. Трансляция.
- •Вопрос 71.Структура гена у прокариот. Оперон.
- •Вопрос 72. Структура гена у эукариот.
- •Вопрос 73. Процессинг рнк.
- •Вопрос 74. Генно—инженерные методы выделения генов.
- •Вопрос 75. Трансформация. Типы векторов, Безвекторные системы.
- •Вопрос 76. Трансгенные формы растений: направления использования, примеры.
Генетическая схема хромосомного определения пола у человека:
Р |
♀46, XX |
× |
♂46, XY |
Типы гамет |
|
|
23, X 23, Y |
F |
46, XX женские особи, 50% |
|
46, XY мужские особи, 50% |
Генетическая схема хромосомного определения пола у дрозофилы:
Р |
♀8, XX |
× |
♂8, XY |
Типы гамет |
4, X |
|
4, X 4, Y |
F |
8, XX женские особи, 50% |
|
8, XY мужские особи, 50% |
Женский пол — гомогаметен (ХХ), мужской — гетерогаметен (Х0) (прямокрылые).
Генетическая схема хромосомного определения пола у пустынной саранчи:
Р |
♀24, XX |
× |
♂23, X0 |
Типы гамет |
12, X |
|
12, X 11, 0 |
F |
24, XX женские особи, 50% |
|
23, X0 мужские особи, 50% |
Женский пол — гетерогаметен (ХY), мужской — гомогаметен (ХХ) (птицы, пресмыкающиеся).
Генетическая схема хромосомного определения пола у голубя:
Р |
♀80, XY |
× |
♂80, XX |
Типы гамет |
40, X 40, Y |
|
40, X |
F |
80, XY женские особи, 50% |
|
80, XX мужские особи, 50% |
Особенности наследования признаков, сцепленных с полом.
Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.
Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.
У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.
Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме (ХА — красный цвет глаз, Ха — белый цвет глаз), а Y-хромосома таких генов не содержит.
Р |
♀XAXA красноглазые |
× |
♂XaY белоглазые |
Типы гамет |
|
|
Xa Y |
F1 |
XAXa ♀ красноглазые 50% |
|
XАY ♂ красноглазые 50% |
Р |
♀XAXa красноглазые |
× |
♂XAY красноглазые |
|
Типы гамет |
XA Xa |
|
XA Y |
|
F2 |
XAXA XAXa ♀ красноглазые 50% |
|
XАY ♂ красноглазые 25% |
XaY ♂ белоглазые 25% |
Р |
♀XaXa белоглазые |
× |
♂XAY красноглазые |
Типы гамет |
Xa |
|
XA Y |
F1 |
XAXa ♀ красноглазые 50% |
|
XaY ♂ белоглазые 50% |
Р |
♀XAXa красноглазые |
× |
♂XaY белоглазые |
||
Типы гамет |
XA Xa |
|
Xa Y |
||
F2 |
XAXA ♀ красноглазые 25% |
XaXa ♀ белоглазые 25% |
|
XАY ♂ красноглазые 25% |
XaY ♂ белоглазые 25% |
У людей мужчина получает Х-хромосому от матери, Y-хромосому — от отца. Женщина получает одну Х-хромосому от матери, другую Х-хромосому от отца. Х-хромосома — средняя субметацентрическая, Y-хромосома — мелкая акроцентрическая; Х-хромосома и Y-хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участокХ-хромосомы (с генами, имеющимися только в Х-хромосоме); 2) гомологичный участок Х-хромосомы и Y-хромосомы (с генами, имеющимися как в Х-хромосоме, так и в Y-хромосоме); 3) негомологичный участок Y-хромосомы (с генами, имеющимися только вY-хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.
Тип наследования |
Локализация генов |
Примеры |
Х-сцепленный рецессивный |
Негомологичный участок Х-хромосомы |
Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр. |
Х-сцепленный доминантный |
Негомологичный участок Х-хромосомы |
Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр. |
Х-Y-сцепленный (частично сцепленный с полом) |
Гомологичный участок Х- и Y-хромосом |
Синдром Альпорта, общая цветовая слепота |
Y-сцепленный |
Негомологичный участок Y-хромосомы |
Перепончатость пальцев ног, гипертрихоз края ушной раковины |
Большинство генов, сцепленных с Х-хромосомой, отсутствуют в Y-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если ХА — нормальная свертываемость крови, Ха — гемофилия и если женщина является носительницей гена гемофилии, то у фенотипически здоровых родителей может родиться сын-гемофилик:
Р |
♀XAXa норм. сверт. крови |
× |
♂XAY норм. сверт. крови |
|
Типы гамет |
XA Xa |
|
XA Y |
|
F2 |
XAXA XАXa ♀ норм. сверт. крови 50% |
|
XАY ♂ норм. сверт. крови 25% |
XaY ♂ гемофилики 25% |
Пластидная наследственность. Понятия: плазмон, плазмоген.
ПЛАСТИДНАЯ НАСЛЕДСТВЕННОСТЬ, внехромосомный способ наследования пластидных признаков, осуществляемый посредством самих пластид.
В зависимости от условий оплодотворения при П. н. пластидные признаки наследуются или только по материнской линии, или от обеих родительских форм (в случае переноса пластид в зиготу и через пыльцевые трубки). О первых фактах П. н. и генетических свойствах пластид сообщили еще на заре развития генетики (1908) немецкие ботаники и генетики Э. Баур и К. Корренс изучившие наследование пестролистности у некоторых растений (герань, ночная красавица, хмель и др.). Отдельные авторы считают, что генетическими информация пластид заключена в их дезоксирибонуклеиновой кислоте (см. Нуклеиновые кислоты). Совокупность пластид клетки как структур, способных передавать наследственную информацию, названа пластидомом (О. Реннер, 1934). Из всех структурных элементов цитоплазмы растений, с которыми можно связать передачу некоторых свойств и признаков материнского организма потомству, пластиды наиболее удобны для анализа, т.к. в большинстве случаев они четко различимы в цитоплазме благодаря целому ряду морфологические особенностей. Кроме того, они способны к скачкообразным изменениям — пластидным мутациям, которые впоследствии четко воспроизводятся.
Плазмоген - носитель цитоплазматической (внеядерной) наследственности; совокупность плазмогенов образует плазмон
Особенности нехромосомного (цитоплазматического) наследования.
Признание за ядром главенствующей роли в передаче наследственных свойств не исключает существования внеядерной наследственности, которая связана с органоидами клетки, способными к саморепродукции. Факторы наследственности, расположенные в клетках вне хромосом, получили название плазмид. Функция плазмид, как и генов, находящихся в хромосомах, связана с ДНК. Установлено, что собственную ДНК имеют:
Эти цитоплазматические структуры способны к авторепродукции. Именно с ними связана передача цитоплазматической наследственности. Проявление этой формы наследственности находится под контролем ядерной ДНК. Пластидная наследственность обнаружена у декоративных цветов львиного зева, ночной красавицы и др. У этих растений наряду с расами, имеющими зеленые листья, существуют расы пестролистости. Признак пестролистости передается только по материнской линии. Цитоплазматическая наследственность известна у ряда культурных растений. У кукурузы существуют сорта с мужской стерильностью, которая передается исключительно через цитоплазму женских половых клеток. В цитоплазме бактерий обнаружены автономно расположенные плазмиды, состоящие из кольцевых молекул двунитчатой ДНК. Эти бактериальные плазмиды обусловливают половую дифференцировку, устойчивость к ряду лекарственных веществ и синтез некоторых белков. Феноменом цитоплазматической наследственности объясняются длительные модификации. Иногда генотип материнского организма оказывает влияние на следующее поколение через цитоплазму яйцеклетки. Такое влияние получило название предетерминации. В явлениях предетерминации действует наследственная информация, заложенная в хромосомах и определяющая особенности яйцеклетки еще до оплодотворения. Пластиды — органоиды эукариотических растений и некоторых фотосинтезирующих простейших. Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНК. Совокупность пластид клетки образует пластидом. По окраске и выполняемой функции выделяют три основных типа пластид:
|
Цитоплазматическая мужская стерильность у растений. Использование ЦМС в селекции.
Мужская стерильность бывает при отсутствии пыльцы или неспособны ее к оплодотворению и проявляется в трех основных формах:
Мужская генеративные органы – тычинки – совершенно не развиваются; подобные явление наблюдается у растений некоторых видов табака;
Пыльники в цветках образуются, но пыльца их нежизнеспособна; эта форма стерильности чаще всего встречается у кукурузы;
В пыльниках образуется нормальная пыльца, но они не растрескиваются и пыльца не попадает на рыльца; это очень редкое явление наблюдается иногда у некоторых сортов томата.
Непосредственной причиной образования форм с ЦМС некоторые ученые считают нарушение синтеза белка в результате мутации в ядре, приводящей к неправильному микроспорогенезу, другие дегенерацию пыльцевых зерен связывают с нарушением снабжения питания пыльников стерильных растений.
Стерильность пыльцы, вызванная цитоплазматическими факторами, носит название цитоплазматической мужской стерильности (ЦМС). Свое название ЦМС получила потому, что этот признак наследуется по материнской линии, через цитоплазму яйцеклетки, и не передается спермиями, т. е. через мужского родителя. ЦМС возникла в ходе эволюции цветковых и проявляется обычно в популяциях растений спонтанно. Она обусловливается определенными ядерно-цитоплазматическими отношениями и выражается в дегенерации большинства пыльцевых зерен и пыльников на определенных этапах их развития. У многих видов, наиболее четко это показано для кукурузы, признак ЦМС, или стерилизующие свойства цитоплазмы, закодирован в митохондриальном геноме, а у некоторых видов растений ЦМС связывают с геномом пластид. Этот вопрос еще не совсем ясен, поскольку некоторые исследователи полагают, что ЦМС обусловлена вирусной природой.
В настоящее время это явление обнаружено у сотен видов растений и используется в связи с гетерозисом для получения гибридных семян первого поколения по принципу восстановления. Отцовская линия, как правило, несет доминантные гены и при массовой гибридизации восстанавливает фертильность в потомстве. Таким образом, высевая гибридные семена, можно получить гетерозисное потомство и фертильные семена, дающие высокий урожай растения.
№ 43, 44 МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ. ПОНЯТИЕ МУТАЦИЯ. ОСНОВНЫЕ ПОЛОЖЕНИЯ МУТАЦИОННОЙ ТЕОРИИ ДЕ-ФРИЗА.
Мутационной называется изменчивость, вызванная возникновением мутации.
Приоритет в создании теории мутаций принадлежит рус. ботанику С.И. Коржинскому, опубликовавшему в 1899г. Работу «Гетерогенезис и эволюция», и голландскому ботанику Х. де Фризу, обосновавшему в своей работе «Теория мутаций» (1901) значение мутаций (внезапных наследуемых изменений).
Мутации — это наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма. Основные положения мутационной теории разработаны Г. Де Фризом в 1901—1903 гг. и сводятся к следующему:
Мутации возникают внезапно как дискретные изменения признаков;
Новые формы устойчивы;
В отличие от ненаследственных изменений мутации не образуют непрерывных рядов. Они представляют собой качественные изменения;
Мутации проявляются по-разному и могут быть как полезными, так и вредными;
Вероятность обнаружения мутаций зависит от числа исследованных особей;
Сходные мутации могут возникать повторно;
Мутации не направленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.
Следует отметить, что любая мутация является лишь материалом для естественного отбора.
КЛАССИФИКАЦИЯ МУТАЦИЙ
Класси-ция мутаций очень разнообразна. Наиболее стабильна класси-ция ядерных мутаций, представляющая следующие 3 типа (по Ш.Ауэрбах, 1978):
- изменение числа хромосом
- изменение расположения и порядка генов на хромосомах
- изменение индивидуальных генов.
№ 45 МУТАГЕН. ТИПЫ МУТАГЕНОВ
Мутагены — химические и физические факторы, вызывающие наследственные изменения — мутации. Впервые искусственные мутации получены в 1925 году Г. А. Надсеном и Г. С. Филипповым у дрожжей действием радиоактивного излучения радия; в 1927 году Г. Мёллер получил мутации у дрозофилы действием рентгеновских лучей.
Способность химических веществ вызывать мутации (действием иода на дрозофилы) открыта И. А. Рапопортом. У особей мух, развившихся из этих личинок, частота мутаций оказалась в несколько раз выше, чем у контрольных насекомых.
КЛАССИФИКАЦИЯ МУТАГЕНОВ: Мутагенами могут быть различные факторы, вызывающие изменения в структуре генов, структуре и количестве хромосом. По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма иэкзогенные — все прочие факторы, в том числе и условия окружающей среды.
По природе возникновения мутагены классифицируют на физические, химические и биологические:
Физические мутагены
Мутации при действии физических мутагенов возникают так же, как и при действии мутагенов химических. Вначале возникает первичное повреждение ДНК. Если оно не будет полностью исправлено в результате репарации, то при послед. репликативном синтезе ДНК будут возникать мутации.
Специфика мутагенеза (процесса возникновения мутаций) при действии физ. факторов связана с характером первичных повреждений генома, вызываемых ими.
Факторы:
Ионизирующее излучение;
Радиоактивный распад;
Ультрафиолетовое излучение;
Чрезмерно высокая или низкая температура.
Химические мутагены
К химическим мутагенам относятся самые разнообразные вещества. Наиболее сильные химические мутагены, увеличивающие частоту мутаций в сотни раз, называются супермутагенами.
Некоторые алкалоиды: колхицин - один из самых распространённых в селекции мутагенов, винкамин, подофиллотоксин;
Окислители и восстановители (нитраты, нитриты, активные формы кислорода);
Алкилирующие агенты (например, иодацетамид);
нитропроизводные мочевины: нитрозометилмочевина,нитрозоэтилмочевина, нитрозодиметилмочевина - часто применяются в сельском хозяйстве;
Этиленимин, этилметансульфонат, диметилсульфат, 1,4-бисдиазоацетилбутан (известный как ДАБ);
Некоторые пестициды;
Некоторые пищевые добавки (например, ароматические углеводороды, цикламаты);
Продукты переработки нефти;
Органические растворители;
Лекарственные препараты (например, цитостатики, препараты ртути, иммунодепрессанты).
К химическим мутагенам условно можно отнести и ряд вирусов (мутагенным фактором вирусов являются их нуклеиновые кислоты — ДНК или РНК).
Биологические мутагены
специфические последовательности ДНК — транспозоны;
некоторые вирусы (вирус кори, краснухи, гриппа);
продукты обмена веществ (продукты окисления липидов);
антигены некоторых микроорганизмов.
№ 47 СОМАТИЧЕСКИЕ И ГЕНЕРАТИВНЫЕ МУТАЦИИ.
Если мутации возникают в любых клетках тела, кроме гамет, их называют соматическими.
Если мутировала клетка растения, из которой затем разовьется почка, а впоследствии — побег, то все клетки этого побега будут мутантными.
Так, на кусте черной смородины может возникнуть ветка с белыми или красными ягодами. При вегетативном размножении — в данном случае черенком этого побега — новые свойства будут наблюдаться и у потомства. Таким образом можно вывести новый сорт смородины.
Если соматическая мутация возникла на ранних стадиях индивидуального развития (онтогенеза), то из мутированной клетки может развиться большой участок ткани, все клетки которого будут мутантными. Такие особи называют мозаиками. Например, человек с глазами разного цвета является мозаикой. Но при половом размножении новый признак, появившийся в результате соматической мутации, потомству не передастся, так как в гаметах этой мутации нет.
Соматические мутации по своей природе ничем не отличаются от генеративных. В отношении растений, которые вообще не имеют зачаткового пути и у которых половые клетки развиваются из меристемы точки роста, деление мутаций по указанному принципу не имеет большого значения. Различие состоит лишь в проявлении и методах их обнаружения.
Чем раньше в онтогенезе возникает соматическая мутация, тем больше оказывается участок ткани, несущие данную мутацию, и чем позднее — тем меньше. Соматическая мутация проявляется мозаично. Особи, несущие участки мутантной ткани, называют мозаиками, или химерами. В силу диплоидности набора хромосом в клетках соматической ткани, проявление мутации возможно только в тех случаях, когда мутантная аллель оказывается доминантной или будет рецессивна и будет находиться в гомозиготном состоянии.
Пример соматической мутации окраски шерстного покрова у овцы: черное пятно возникло на фоне коричневой окраски. Эта мутация могла проявиться либо как доминантная, либо как рецессивная при потере части или всей гомологичной хромосомы. Подобные явления часто встречаются у самцов дрозофилы, у которых иногда часть глаза имеет красные фасетки, а часть — белые. Эта мозаичность обязана возникновению рецессивной мутации в локусе white половой хромосомы во время развития имагинальных дисков глаз. Но появляется она не только у самцов, у которых этот ген в Х-хромосоме находится в гемизиготном состоянии, но и у гетерозиготных самок в силу утраты целой хромосомы, несущей доминантную аллель w+, или потери части хромосомы (дефишенси), несущей ту же аллель. В этом случае рецессивная аллель, теперь уже находясь в гомозиготном состоянии, также может проявиться, но эта химерность будет не следствием мутации гена, а следствием изменений в числе или структуре хромосом.
У организмов, размножающихся исключительно половым путем и имеющих раннее обособление зачаткового пути, соматические мутации не играют роли в эволюции и не представляют какой-либо ценности для селекции. Но у тех организмов, у которых есть бесполое размножение, соматические мутации могут иметь огромное значение, особенно в селекции, так как у таких форм из соматической ткани развиваются половые клетки. Так, например у плодовых и ягодных вегетативно размножаемых растений любая соматическая мутация может дать растение и целый клон с новым мутантным признаком.
Одним из видов соматических мутаций у растений являются почковые мутации, возникающие в меристемных клетках точки роста стебля. В этом случае весь побег, развившийся из этой клетки, будет нести мутантный признак. Почковые мутации были известны давно и назывались спортами; от такого спорта И. В. Мичурин получил сорт яблони, названный им Антоновка 600-граммовая. Исследование соматических мутации в настоящее время приобретает важное значение для изучения причин возникновения рака у человека и животных. Предполагают, что ряд злокачественных опухолей возникает по типу соматических мутаций.
Соматические мутации имеют прямое отношение также к выяснению причин старения человеческого организма, так как с возрастом может происходить накопление физиологических мутаций в популяции соматических клеток различных органов. Соматические мутации используют для изучения частоты возникновения видимых мутаций. По мозаичности проявления мутантного признака в тканях можно обнаруживать соматические мутации вплоть до одиночных мутантных клеток.
Различий в частоте возникновения соматических и генеративных мутаций не обнаружено. Однако есть факты, указывающие на то, что ряд генов мутирует с разной скоростью на разных стадиях онтогенеза. Так, например, у растения дельфиниум ген левандовой окраски мутирует как на очень ранней, так и на поздней стадии развития цветка; в случае мутирования гена на поздней стадии в лепестках встречаются одиночные клетки с измененной окраской; при возникновении той же мутации на ранней стадии она может затрагивать большие по размеру участки — половину лепестка или даже целый цветок. Таким образом, генеративные и соматические мутации по своему возникновению не отличаются друг от друга.
Если же мутация произошла в первичных половых клетках или в образовавшихся из них гаметах, то такую мутацию называют генеративной.
Очевидно, что такие мутации передаются следующему поколению. При близкородственном скрещивании (при браке между родственниками) рецессивные мутировавшие гены могут перейти в гомозиготное состояние и проявиться в фенотипе потомства.
По характеру воздействия на организм мутации делят на летальные, полу летальные, нейтральные и полезные. Летальные мутации в клетках человеческого организма несовместимы с жизнью, и их обладатели погибают или в эмбриогенезе, или вскоре после рождения.
Полулетальные мутации приводят к резкому ухудшению каких-либо процессов жизнедеятельности, что в большинстве случаев также рано или поздно приводит к смерти. У человека к таким мутациям относится гемофилия.
Нейтральные мутации — понятие относительное, так как любое изменение в такой отлаженной системе, как генотип, едва ли может быть неважным для организма. К таким мутациям относят, например, мутации в участках хромосом, которые не кодируют белков.
Полезные мутации, по-видимому, лежат в основе эволюционного процесса, приводя к появлению полезных для вида признаков. Эти признаки, закрепляясь естественным отбором, могут привести к образованию новой систематической единицы — подвида или даже вида.
Мутации генов в половых клетках обнаруживаются на стадии зиготы следующих поколений. Если исключить такие мутации, которые действуют на газеты, затрагивая их физиологию и оплодотворяющую способность, то доминантная мутация проявляется в зиготе первого же поколения Fl а рецессивная — лишь в F2, F3 и т. д. при переходе мутации в гомозиготное состояние. Если генеративная мутация возникает в одной клетке на ранней стадии зачаткового пути или в период размножения сперматогониев и оогониев, то такая мутация размножится в количестве, пропорциональном числу, прошедших клеточных делений. В этом случае часть половых клеток будет нести мутантную аллель, а у части генотип останется неизменным. Особь с такими половыми клетками будет нести «пучок» идентичных мутаций, которые обнаруживаются генетически при скрещивании. Мутация, возникшая на стадии сперматозоида или яйцеклетки, останется, как правило, единичной.
И
сточник: http://www.activestudy.info/generativnye-i-somaticheskie-mutacii-2/ ©
Зооинженерный факультет МСХА
№ 46, 48, 49 ГЕНОТИПИЧЕСКАЯ
