Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Криптографические методы и средства защиты инфо...docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
198.22 Кб
Скачать

2.1.4. Линейный метод криптоанализа .

В открытой печати линейной метод криптоанализа впервые был предложен японским математиком Мацуи. Метод предполагает, что криптоаналитик знает открытые и соответствующие зашифрованные тексты.

Обычно при шифровании используется сложение по модулю 2 текста с ключом и операции рассеивания и перемешивания. Задача криптоаналитика — найти наилучшую линейную аппроксимацию (после всех циклов шифрования ) выражения

xi1+ …. + xir + yj1 + yjs=zk1 + …. + zk t (3.1)

Пусть pL — вероятность того, что (3.1) выполняется, при этом необходимо, чтобы pL № 1/2 и величина | pL-1/2 | должна быть максимальна. Если | pL-1/2 | достаточно велика и криптоаналитику известно достаточное число пар открытых и соответствующих зашифрованных текстов, то сумма по модулю 2 бит ключа на соответствующей позиции в правой части (3.1) равна наиболее вероятному значению суммы по модулю 2 соответствующих бит открытых и зашифрованных текстов в левой части. Если pL > 1/2, то сумма бит ключа в правой части (3.1) равна нулю, если сумма бит в левой части равна нулю больше, чем для половины пар зашифрованных текстов, и сумма бит ключа в правой части (3.1) равна единице, если сумма бит в левой части равна единице больше, чем для половины текстов . Если pL< 1/2 , то наоборот : сумма бит ключа в правой части (3.1) равна нулю , если сумма бит в левой части равна единице больше , чем для половины пар открытых и зашифрованных текстов, и сумма бит ключа в правой части (3.1) равна единице, если сумма бит в левой части равна нулю больше, чем для половины текстов. Для нахождения каждого бита собственно ключа теперь нужно решить систему линейных уравнений для известных линейных комбинаций этих бит, но эта процедура не представляет сложности, так как сложность решения системы линейных уравнений описывается полиномом не более третьей степени от длины ключа.

Требуемое для раскрытия ключа количество N пар открытых и зашифрованных текстов (блоков) оценивается выражением

N » | pL-1/2 | -2 .

Для раскрытия ключа шифра DES этим методом необходимо 247 пар известных открытых и зашифрованных текстов.

  • Рассеивание (diffusion) — то есть изменение любого знака открытого текста или ключа влияет на большое число знаков шифротекста, что скрывает статистические свойства открытого текста;

  • Перемешивание (confusion) — использование преобразований, затрудняющих получение статистических зависимостей между шифротектстом и открытым текстом.

Симметри́чные криптосисте́мы (также симметричное шифрование, симметричные шифры) — способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование. Ключ алгоритма должен сохраняться в секрете обеими сторонами. Алгоритм шифрования выбирается сторонами до начала обмена сообщениями.

Общая схема

В настоящее время симметричные шифры — это:

  • блочные шифры. Обрабатывают информацию блоками определённой длины (обычно 64, 128 бит), применяя к блоку ключ в установленном порядке, как правило, несколькими циклами перемешивания и подстановки, называемыми раундами. Результатом повторения раундов является лавинный эффект — нарастающая потеря соответствия битов между блоками открытых и зашифрованных данных.

  • поточные шифры, в которых шифрование проводится над каждым битом либо байтом исходного (открытого) текста с использованием гаммирования. Поточный шифр может быть легко создан на основе блочного (например, ГОСТ 28147-89 в режиме гаммирования), запущенного в специальном режиме.

Большинство симметричных шифров используют сложную комбинацию большого количества подстановок и перестановок. Многие такие шифры исполняются в несколько (иногда до 80) проходов, используя на каждом проходе «ключ прохода». Множество «ключей прохода» для всех проходов называется «расписанием ключей» (key schedule). Как правило, оно создается из ключа выполнением над ним неких операций, в том числе перестановок и подстановок.

Типичным способом построения алгоритмов симметричного шифрования является сеть Фейстеля. Алгоритм строит схему шифрования на основе функции F(D, K), где D — порция данных, размером вдвое меньше блока шифрования, а K — «ключ прохода» для данного прохода. От функции не требуется обратимость — обратная ей функция может быть неизвестна. Достоинства сети Фейстеля — почти полное совпадение дешифровки с шифрованием (единственное отличие — обратный порядок «ключей прохода» в расписании), что сильно облегчает аппаратную реализацию.

Операция перестановки перемешивает биты сообщения по некоему закону. В аппаратных реализациях она тривиально реализуется как перепутывание проводников. Именно операции перестановки дают возможность достижения «эффекта лавины». Операция перестановки линейна — f(a) xor f(b) == f(a xor b)

Операции подстановки выполняются как замена значения некоей части сообщения (часто в 4, 6 или 8 бит) на стандартное, жестко встроенное в алгоритм иное число путем обращения к константному массиву. Операция подстановки привносит в алгоритм нелинейность.

Зачастую стойкость алгоритма, особенно к дифференциальному криптоанализу, зависит от выбора значений в таблицах подстановки (S-блоках). Как минимум считается нежелательным наличие неподвижных элементов S(x) = x, а также отсутствие влияния какого-то бита входного байта на какой-то бит результата — то есть случаи, когда бит результата одинаков для всех пар входных слов, отличающихся только в данном бите.

Параметры алгоритмов

Существует множество (не менее двух десятков) алгоритмов симметричных шифров, существенными параметрами которых являются:

  • стойкость

  • длина ключа

  • число раундов

  • длина обрабатываемого блока

  • сложность аппаратной/программной реализации

  • сложность преобразования

Распространенные алгоритмы

  • AES (англ. Advanced Encryption Standard) — американский стандарт шифрования

  • ГОСТ 28147-89 — отечественный стандарт шифрования данных

  • DES (англ. Data Encryption Standard) — стандарт шифрования данных в США до AES

  • 3DES (Triple-DES, тройной DES)

  • RC6 (Шифр Ривеста )

  • Twofish

  • IDEA (англ. International Data Encryption Algorithm)

  • SEED — корейский стандарт шифрования данных

  • Camellia — сертифицированный для использовании в Японии шифр

  • CAST (по инициалам разработчиков Carlisle Adams и Stafford Tavares)

  • XTEA — наиболее простой в реализации алгоритм

Сравнение с асимметричными криптосистемами

Достоинства

  • скорость (по данным Applied Cryptography — на 3 порядка выше)

  • простота реализации (за счёт более простых операций)

  • меньшая требуемая длина ключа для сопоставимой стойкости

  • изученность (за счёт большего возраста)

Недостатки

  • сложность управления ключами в большой сети. Означает квадратичное возрастание числа пар ключей, которые надо генерировать, передавать, хранить и уничтожать в сети. Для сети в 10 абонентов требуется 45 ключей, для 100 уже 4950, для 1000 — 499500 и т. д.

  • сложность обмена ключами. Для применения необходимо решить проблему надёжной передачи ключей каждому абоненту, так как нужен секретный канал для передачи каждого ключа обеим сторонам.

Для компенсации недостатков симметричного шифрования в настоящее время широко применяется комбинированная (гибридная) криптографическая схема, где с помощью асимметричного шифрования передаётся сеансовый ключ, используемый сторонами для обмена данными с помощью симметричного шифрования.

Важным свойством симметричных шифров является невозможность их использования для подтверждения авторства, так как ключ известен каждой стороне.

Основные сведения

Алгоритмы шифрования и дешифрования данных широко применяются в компьютерной технике в системах сокрытия конфиденциальной и коммерческой информации от злонамеренного использования сторонними лицами. Главным принципом в них является условие, что передатчик и приемник заранее знают алгоритм шифрования, а также ключ к сообщению, без которых информация представляет собой всего лишь набор символов, не имеющих смысла.

Классическим примером таких алгоритмов являются симметричные криптографические алгоритмы, перечисленные ниже:

  • Простая перестановка

  • Одиночная перестановка по ключу

  • Двойная перестановка

  • Перестановка «Магический квадрат»

Простая перестановка

Простая перестановка без ключа — один из самых простых методов шифрования. Сообщение записывается в таблицу по столбцам. После того, как открытый текст записан колонками, для образования шифровки он считывается по строкам. Для использования этого шифра отправителю и получателю нужно договориться об общем ключе в виде размера таблицы. Объединение букв в группы не входит в ключ шифра и используется лишь для удобства записи несмыслового текста.

Одиночная перестановка по ключу

Более практический метод шифрования, называемый одиночной перестановкой по ключу очень похож на предыдущий. Он отличается лишь тем, что колонки таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Двойная перестановка

Для дополнительной скрытности можно повторно шифровать сообщение, которое уже было зашифровано. Этот способ известен под названием двойная перестановка. Для этого размер второй таблицы подбирают так, чтобы длины ее строк и столбцов были другие, чем в первой таблице. Лучше всего, если они будут взаимно простыми. Кроме того, в первой таблице можно переставлять столбцы, а во второй строки. Наконец, можно заполнять таблицу зигзагом, змейкой, по спирали или каким-то другим способом. Такие способы заполнения таблицы если и не усиливают стойкость шифра, то делают процесс шифрования гораздо более занимательным.

Перестановка «Магический квадрат»

Магическими квадратами называются квадратные таблицы со вписанными в их клетки последовательными натуральными числами от 1, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число. Подобные квадраты широко применялись для вписывания шифруемого текста по приведенной в них нумерации. Если потом выписать содержимое таблицы по строкам, то получалась шифровка перестановкой букв. На первый взгляд кажется, будто магических квадратов очень мало. Тем не менее, их число очень быстро возрастает с увеличением размера квадрата. Так, существует лишь один магический квадрат размером 3 х 3, если не принимать во внимание его повороты. Магических квадратов 4 х 4 насчитывается уже 880, а число магических квадратов размером 5 х 5 около 250000. Поэтому магические квадраты больших размеров могли быть хорошей основой для надежной системы шифрования того времени, потому что ручной перебор всех вариантов ключа для этого шифра был немыслим.

Блочный шифр — разновидность симметричного шифра. Особенностью блочного шифра является обработка блока нескольких байт за одну итерацию (как правило 8 или 16).Блочные криптосистемы разбивают текст сообщения на отдельные блоки и затем осуществляют преобразование этих блоков с использованием ключа.

Преобразование должно использовать следующие принципы:

  • Рассеивание (diffusion) — то есть изменение любого знака открытого текста или ключа влияет на большое число знаков шифротекста, что скрывает статистические свойства открытого текста;

  • Перемешивание (confusion) — использование преобразований, затрудняющих получение статистических зависимостей между шифротектстом и открытым текстом.

К достоинствам блочных шифров относят похожесть процедур шифрования и расшифрования, которые, как правило, отличаются лишь порядком действий. Это упрощает создание устройств шифрования, так как позволяет использовать одни и те же блоки в цепях шифрования и дешифрования.

Основная идея

Блочный шифр состоит из двух взаимосвязанных алгоритмов: алгоритм шифрования E и алгоритм расшифрования E−1. Входными данными служат блок размером n бит и k-битный ключ. На выходе получается n-битный зашифрованный блок. Для любого фиксированного ключа функция расшифрования является обратной к функции шифрования для любого блока M и ключа K.

Для любого ключа K, EK является биективной функцией (перестановкой) на множестве n-битных блоков.

Размер блока n — это фиксированный параметр блочного шифра, обычно равный 64 или 128 битам, хотя некоторые шифры допускают несколько различных значений. Длина 64 бита была приемлема до середины 90-х годов, затем использовалась длина 128 бит, что примерно соответствует размеру машинного слова и позволяет эффективную реализацию на большинстве распространённых вычислительных платформах. Различные схемы шифрования позволяют зашифровывать открытый текст произвольной длины. Каждая имеет определенные характеристики: вероятность ошибки, простота доступа, уязвимость к атакам. Типичными размера ключа являются 40, 56, 64, 80, 128, 192 и 256 бит. В 2006 г. 80-битный ключ способен был предотвратить атаку грубой силой.

Режимы работы блочного шифра

Простейшим режимом работы блочного шифра является ECB (Electronic CodeBook (англ.) — режим простой замены или электронной кодовой книги), где все блоки открытого текста зашифровываются независимо друг от друга. Однако, при использовании этого режима статистические свойства открытых данных частично сохраняются, так как каждому одинаковому блоку данных однозначно соответствует зашифрованный блок данных. При большом количестве данных (например, видео или звук) это может привести к утечке информации о их содержании и дать больший простор для криптоанализа. Удаление статистических зависимостей в открытом тексте возможно с помощью предварительного архивирования, но оно не решает задачу полностью, так как в файле остается служебная информация архиватора, что не всегда допустимо.

Аналогичная проблема возникает при формировании и преобразовании «хвостового» блока данных. Так как данные могут быть любой длины, а блочный шифр требует данные кратные длине блока, то «хвостовой» блок данных зачастую приходится искусственно дополнять до требуемого размера. При этом, например, заполнение хвоста одинаковыми символами облегчает атаку по известному открытому тексту. Однако, проблема легко решается заполнением случайных содержимым (к примеру, с использованием ГПСЧ)

Принципиальным решением описанных проблем является гаммирование данных и использование контекстно-зависимых режимов шифрования.

Классификация блочных шифров

При блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов:

  • шифры перестановки (transposition, permutation, P-блоки);

  • шифры замены (подстановки, substitution, S-блоки).

Шифры перестановки

Шифры перестановок переставляют элементы открытых данных (биты, буквы, символы) в некотором новом порядке. Различают шифры горизонтальной, вертикальной, двойной перестановки, решетки, лабиринты, лозунговые и др.

Шифры замены

Шифры замены заменяют элементы открытых данных на другие элементы по определенному правилу. Paзличают шифры простой, сложной, парной замен

Смешанное шифрование

В современных криптографических системах, как правило, используют оба способа шифрования (замены и перестановки). Такой шифратор называют ранлпылкнг (product cipher). Oн более стойкий, чем шифратор, использующий только замены или только перестановки. Блочное шифрование можно осуществлять двояко:

  1. Без обратной связи (ОС). Несколько битов (блок) исходного текста шифруются одновременно, и каждый бит исходного текста влияет на каждый бит шифротекста. Однако взаимного влияния блоков нет, то есть два одинаковых блока исходного текста будут представлены одинаковым шифртекстом. Поэтому подобные алгоритмы можно использовать только для шифрования случайной последовательности битов (например, ключей). Примерами являются DES в режиме ECB и ГОСТ 28147-89 в режиме простой замены.

  2. С обратной связью. Обычно ОС организуется так: предыдущий шифрованный блок складывается по модулю 2 с текущим блоком. В качестве первого блока в цепи ОС используется инициализирующее значение. Ошибка в одном бите влияет на два блока — ошибочный и следующий за ним. Пример — DES в режиме CBC.

При блочном шифровании может также применяться ГПСЧ (генератор псевдослучайных чисел):

  1. Поблочное шифрование потока данных. Шифрование последовательных блоков (подстановки и перестановки) зависит от ГПСЧ, управляемого ключом.

  2. Поблочное шифрование потока данных с ОС. ГПСЧ управляется шифрованным или исходным текстом или обоими вместе.

Объединение блочных шифров

Существует множество способов объединять блочные алгоритмы для получения новых алгоритмов. Стимулом создавать подобные схемы является желание повысить безопасность, не пробираясь через тернии создания нового алгоритма. DES является безопасным алгоритмом, он подвергался криптоанализу добрых 20 лет и, тем не менее, наилучшим способом вскрытия остается грубая сила. Однако ключ слишком короток. Разве не плохо было бы использовать DES в качестве компонента другого алгоритма с более длинным ключом? Это позволило бы получить преимущества длинного ключа с гарантией двух десятилетий криптоанализа.

Одним из способов объединения является многократное шифрование — для шифрования одного и того же блока открытого текста алгоритм шифрования используется несколько раз с несколькими ключами. Шифрование каскадом похоже на многократное шифрование, но использует различные алгоритмы. Существуют и другие методы.

Повторное шифрование блока открытого текста одним и тем же ключом с помощью того же или другого алгоритма неразумно. Повторное использование того же алгоритма не увеличивает сложность вскрытия грубой силой. (Не забывайте, мы предполагаем, что алгоритм, включая количество шифрований, известен криптоаналитику.) При различных алгоритмах сложность вскрытия грубой силой может возрастать, а может и остаться неизменной. Если вы собираетесь использовать методы, описанные в этой главе, убедитесь, что ключи для последовательных шифрований различны и независимы.

Двойное шифрование

Наивным способом повысить безопасность алгоритма является шифрование блока дважды с двумя различными ключами. Сначала блок шифруется первым ключом, а затем получившийся шифротекст шифруется вторым ключом. Дешифрирование является обратным процессом.

Если блочный алгоритм образует группу, то всегда существует K3, для которого

Если алгоритм не образует группу, то при помощи исчерпывающего поиска взломать получающийся дважды зашифрованный блок шифротекста намного сложнее. Вместо 2n (где n — длина ключа в битах), потребуется 22n попыток. Если алгоритм использует 64-битовый ключ, для обнаружения ключей, которыми дважды зашифрован шифротекст, потребуется 2128 попыток.

Но при вскрытии с известным открытым текстом это не так. Меркл и Хеллман придумали способ обменять память на время, который позволяет вскрыть такую схему двойного шифрования за 2n+1 шифрований, а не за 22n. (Они использовали эту схему против DES, но результаты можно обобщить на все блочные алгоритмы.)

Это вскрытие называется «встреча посередине»: с одной стороны выполняется шифрование, а с другой — дешифрирование, получившиеся посередине результаты сравниваются.

В этом вскрытии криптоаналитику известны P1, C1, P2 и C2, такие что

Для каждого возможного K (или K1, или K2), криптоаналитик рассчитывает EK(P1) и сохраняет результат в памяти. Собрав все результаты, он для каждого K вычисляет DK(C1) и ищет в памяти такой же результат. Если такой результат обнаружен, то возможно, что текущий ключ — K2, а ключ для результата в памяти — K1. Затем криптоаналитик шифрует P1 с помощью K1 и K2. Если он получает C2, то он может гарантировать (с вероятностью успеха 1 к 22n-2m, где m — размер блока), что он узнал и K1, и K2. Если это не так, он продолжает поиск. Максимальное количество попыток шифрования, которое ему, возможно, придется предпринять, равно 2*2n, или 2n+1. Если вероятность ошибки слишком велика, он может использовать третий блок шифротекста, обеспечивая вероятность успеха 1 к 22n-3m. Существуют и другие способы оптимизации.

Для такого вскрытия нужен большой объем памяти: 2n блоков. Для 56-битового ключа нужно хранить 256 64-битовых блоков, или 1017 байтов. Такой объем памяти пока еще трудно себе представить, но этого хватает, чтобы убедить самых параноидальных криптографов в том, что двойным шифрованием пользоваться не стоит.

При 128-битовом ключе для хранения промежуточных результатов потребуется 1039 байтов. Если предположить, что есть способ хранить бит информации, используя единственный атом алюминия, устройство памяти, нужное для выполнения такого вскрытия, будет представлять собой алюминиевый куб с ребром, длиной 1 км. Кроме того, вам понадобится куда-то его поставить! Вскрытие «встреча посередине» кажется невозможным для  ключей такого размера.

Многократное последовательное использование блочных алгоритмов

А как насчет шифрования сначала алгоритмом А и ключом КА, а затем еще раз алгоритмом В и ключом КВ? Может быть у Алисы и Боба различные представления о том, какой алгоритм безопаснее: Алиса хочет пользоваться алгоритмом А, а Боб — алгоритмом В. Этот прием, иногда называемый последовательным использованием (cascading), можно распространить и на большее количество алгоритмов и ключей.

Пессимисты утверждали, что совместное использование двух алгоритмов не гарантирует повышения безопасности. Алгоритмы могут взаимодействовать каким-то хитрым способом, что на самом деле может даже уменьшить безопасность. Даже тройное шифрование тремя различными алгоритмами может не быть настолько безопасным, насколько вам это кажется.

Упомянутые предостережения верны, только если различные ключи зависят друг от друга. Если все используемые ключи независимы, то сложность взлома последовательности алгоритмов, по крайней мере, не меньше, чем сложность взлома первого из применяемых алгоритмов.

Если второй алгоритм чувствителен к вскрытию с выбранным открытым текстом, то первый алгоритм может облегчить это вскрытие и при последовательном использовании сделать второй алгоритм чувствительным к вскрытию с известным открытым текстом. Такое возможное облегчение вскрытия не ограничивается только алгоритмами шифрования: если вы позволите кому-то другому определить любой из алгоритмов, делающих что-то с вашим сообщением до шифрования, стоит удостовериться, что ваше шифрование устойчиво по отношению к вскрытию с выбранным открытым текстом. (Обратите внимание, что наиболее часто используемым алгоритмом для сжатия и оцифровки речи до модемных скоростей, применяемым перед любым алгоритмом шифрования, является CELP, разработанный NSA.)

Это можно сформулировать и иначе: При использовании вскрытия с выбранным открытым текстом последовательность шифров взломать не легче, чем любой из шифров последовательности. Ряд результатов показал, что последовательное шифрование взломать по крайней мере не легче, чем самый сильный из шифров последовательности, но в основе этих результатов лежат некоторые несформулированные предположения. Только если алгоритмы коммутативны, как в случае каскадных потоковых шифров (или блочных шифров в режиме OFB), надежность их последовательности не меньше, чем у сильнейшего из используемых алгоритмов.

Если Алиса и Боб не доверяют алгоритмам друг друга, они могут использовать их последовательно. Для потоковых алгоритмов их порядок не имеет значения. При использовании блочных алгоритмов Алиса может сначала использовать алгоритм A, а затем алгоритм B. Боб, который больше доверяет алгоритму B, может использовать алгоритм B перед алгоритмом A. Между алгоритмами они могут вставить хороший потоковый шифр. Это не причинит вреда и может значительно повысить безопасность.

Ключи для каждого алгоритма последовательности должны быть независимыми. Если алгоритм A использует 64-битовый ключ, а алгоритм B — 128-битовый ключ, то получившаяся последовательность должна использовать 192-битовый ключ. При использовании зависимых ключей у пессимистов гораздо больше шансов оказаться правыми.

Объединение нескольких блочных алгоритмов

Вот другой способ объединить несколько блочных алгоритмов, безопасность которого гарантировано будет, по крайней мере, не меньше, чем безопасность обоих алгоритмов. Для двух алгоритмов (и двух независимых ключей):

При условии, что строка случайных битов действительно случайна, этот метод шифрует M с помощью одноразового блокнота, а затем содержимое блокнота и получившееся сообщение шифруются каждым из двух алгоритмов. Так как и то, и другое необходимо для восстановления M, криптоаналитику придется взламывать оба алгоритма. Недостатком является удвоение размера шифротекста по сравнению с открытым текстом.

Этот метод можно расширить для нескольких алгоритмов, но добавление каждого алгоритма увеличивает шифротекст. Сама по себе идея хороша, но не очень практична.

Пото́чный шифр — это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к симметричному шифрованию, нежели блочные шифры.

Режим гаммирования для поточных шифров

Простейшая реализация поточного шифра изображена на рисунке. Генератор гаммы выдаёт ключевой поток (гамму): . Обозначим поток битов открытого текста . Тогда поток битов шифротекста получается с помощью применения операции XOR: , где .

Расшифрование производится операцией XOR между той же самой гаммой и зашифрованным текстом: .

Очевидно, что если последовательность битов гаммы не имеет периода и выбирается случайно, то взломать шифр невозможно. Но у данного режима шифрования есть и отрицательные особенности. Так ключи, сравнимые по длине с передаваемыми сообщениями, трудно использовать на практике. Поэтому обычно применяют ключ меньшей длины (например, 128 бит). С помощью него генерируется псевдослучайная гаммирующая последовательность ( она должна удовлетворять постулатам Голомба). Естественно, псевдослучайность гаммы может быть использована при атаке на поточный шифр.

Классификация поточных шифров

Допустим, например, что в режиме гаммирования для поточных шифров при передаче по каналу связи произошло искажение одного знака шифротекста. Очевидно, что в этом случае все знаки, принятые без искажения, будут расшифрованы правильно. Произойдёт потеря лишь одного знака текста. А теперь представим, что один из знаков шифротекста при передаче по каналу связи был потерян. Это приведёт к неправильному расшифрованию всего текста, следующего за потерянным знаком. Практически во всех каналах передачи данных для поточных систем шифрования присутствуют помехи. Поэтому для предотвращения потери информации решают проблему синхронизации шифрования и расшифрования текста. По способу решения этой проблемы шифрсистемы подразделяются на синхронные и системы с самосинхронизацией.

Синхронные поточные шифры

Определение:

Синхронные поточные шифры (СПШ) — шифры, в которых поток ключей генерируется независимо от открытого текста и шифротекста.

При шифровании генератор потока ключей выдаёт биты потока ключей, которые идентичны битам потока ключей при дешифровании. Потеря знака шифротекста приведёт к нарушению синхронизации между этими двумя генераторами и невозможности расшифрования оставшейся части сообщения. Очевидно, что в этой ситуации отправитель и получатель должны повторно синхронизоваться для продолжения работы.

Обычно синхронизация производится вставкой в передаваемое сообщение специальных маркеров. В результате этого пропущенный при передаче знак приводит к неверному расшифрованию лишь до тех пор, пока не будет принят один из маркеров.

Заметим, что выполняться синхронизация должна так, чтобы ни одна часть потока ключей не была повторена. Поэтому переводить генератор в более раннее состояние не имеет смысла.

Плюсы СПШ:

  • отсутствие эффекта распространения ошибок (только искажённый бит будет расшифрован неверно);

  • предохраняют от любых вставок и удалений шифротекста, так как они приведут к потере синхронизации и будут обнаружены.

Минусы СПШ:

  • уязвимы к изменению отдельных бит шифрованного текста. Если злоумышленнику известен открытый текст, он может изменить эти биты так, чтобы они расшифровывались, как ему надо.

Самосинхронизирующиеся поточные шифры

Основная идея построения была запатентована в 1946 г. в США. Определение: Самосинхронизирующиеся поточные шифры (асинхронные поточные шифры (АПШ)) – шифры, в которых поток ключей создаётся функцией ключа и фиксированного числа знаков шифротекста.

Итак, внутреннее состояние генератора потока ключей является функцией предыдущих N битов шифротекста. Поэтому расшифрующий генератор потока ключей, приняв N битов, автоматически синхронизируется с шифрующим генератором. Реализация этого режима происходит следующим образом: каждое сообщение начинается случайным заголовком длиной N битов; заголовок шифруется, передаётся и расшифровывается; расшифровка является неправильной, зато после этих N бит оба генератора будут синхронизированы.

Плюсы АПШ:

  • Размешивание статистики открытого текста. Так как каждый знак открытого текста влияет на следующий шифротекст, статистические свойства открытого текста распространяются на весь шифротекст. Следовательно, АПШ может быть более устойчивым к атакам на основе избыточности открытого текста, чем СПШ.

Минусы АПШ:

  • распространение ошибки (каждому неправильному биту шифротекста соответствуют N ошибок в открытом тексте);

  • чувствительны к вскрытию повторной передачей.

Поточные шифры на регистрах сдвига с линейной обратной связью (РСЛОС)

Теоретическая основа

Есть несколько причин использования линейных регистров сдвига в криптографии:

  • высокое быстродействие криптографических алгоритмов

  • применение только простейших операций сложения и умножения, аппаратно реализованных практически во всех вычислительных устройствах

  • хорошие криптографические свойства (генерируемые последовательности имеют большой период и хорошие статистические свойства)

  • легкость анализа с использованием алгебраических методов за счет линейной структуры

Определение: Регистр сдвига с линейной обратной связью длины L состоит из L ячеек пронумерованных ,каждая из которых способна хранить 1 бит и имеет один вход и один выход; и синхросигнала (clock), который контролирует смещение данных. В течение каждой единицы времени выполняются следующие операции:

  • содержимое ячейки формирует часть выходной последовательности;

  • содержимое -той ячейки перемещается в ячейку для любого , .

  • новое содержимое ячейки определяется битом обратной связи, который вычисляется сложением по модулю 2 с определёнными коэффициентами битов ячеек .

Регистр сдвига с линейной обратной связью.

На первом шаге:

На втором шаге:

Следующее соотношение описывает в общем виде работу РСЛОС:

Если мы запишем во все ячейки биты равны нулю, то система будет генерировать последовательность, состоящую из всех нулей. Если записать ненулевые биты, то получим полубесконечную последовательность. Последовательность определяется коэффициентами Посмотрим, каким может быть период такой системы: Число ненулевых заполнений: Значит, . После возникновения одного заполнения, которое было раньше, процесс начнёт повторяться. Процесс заполнения регистра, как показано выше, представим линейным разностным уравнением. Перенесём все члены в одну часть равенства, получим: .

Обозначим: . Тогда:

Важным свойством этого многочлена является — приводимость. Определение: Многочлен называется приводимым, если он может быть представлен как произведение двух многочленов меньших степеней с коэффициентами из данного поля (в нашем случае с двоичными коэффициентами). Если такое представление не имеет место, то многочлен называется неприводимым. Если многочлен является неприводимым и примитивным, то период будет совпадать с максимально возможным периодом, равным

Пример.

Пример: Возьмём неприводимый примитивный многочлен Этот многочлен можно записать, как – выписаны степени, при которых стоят ненулевые коэффициенты. Запишем в исходном состоянии в ячейки и определим длину периода генератора:

Таблица. Определение периода генератора

Обратная связь

Ячейка0

Ячейка1

Ячейка2

1

0

0

1

0

1

0

0

1

0

1

0

1

1

0

1

1

1

1

0

0

1

1

1

0

0

1

1

1

0

0

1

Период генератора равен На выходе генератора буде последовательность: Приведём примеры некоторых примитивных многочленов по модулю 2:

Линейная сложность

Линейная сложность бинарной последовательности – одна из самых важных характеристик работы РСЛОС. Поэтому остановимся на этой теме поподробнее. Прежде чем дать определение линейной сложности введём некоторые обозначения. — бесконечная последовательность с членами – конечная последовательность длины , членами которой являются Говорят, что РСЛОС генерирует последовательность , если существует некоторое исходное состояние, при котором выходная последовательность РСЛОС совпадает с . Аналогично, говорят, что РСЛОС генерирует конечную последовательность , если существует некоторое начальное состояние, для которого выходная последовательность РСЛОС имеет в качестве первых n членов члены последовательности . Наконец дадим определение линейной сложности бесконечной двоичной последовательности. Определение: Линейной сложностью бесконечной двоичной последовательности называется число , которое определяется следующим образом:

  • Если – нулевая последовательность , то

  • Если не существует РСЛОС, который генерирует , то равно бесконечности.

  • Иначе, есть длина самого короткого РСЛОС, который генерирует .

Определение: Линейной сложностью конечной двоичной последовательности называется число , которое равно длине самого короткого РСЛОС, который генерирует последовательность, имеющую в качестве первых членов . Свойства линейной сложности: Пусть и – двоичные последовательности. Тогда: 1. Для любого 0″ style=»width:35.25pt; height:10.5pt;visibility:visible;mso-wrap-style:square»> 0″> линейная сложность подпоследовательности удовлетворяет неравенствам 2. тогда и только тогда, когда – нулевая последовательность длины . 3. тогда и только тогда, когда . 4. Если – периодическая с периодом , тогда 5. Эффективным алгоритмом определения линейной сложности конечной двоичной последовательности является алгоритм Берлекемпа-Месси.

А5 — это поточный алгоритм шифрования, используемый для обеспечения конфиденциальности передаваемых данных между телефоном и базовой станцией в европейской системе мобильной цифровой связи GSM (Group Special Mobile).

Шифр основан на побитовом сложении по модулю два (булева операция XOR) генерируемой псевдослучайной последовательности и шифруемой информации. В A5 псевдослучайная последовательность реализуется на основе трёх линейных регистров сдвига с обратной связью. Регистры имеют длины 19, 22 и 23 бита соответственно. Сдвигами управляет специальная схема, организующая на каждом шаге смещение как минимум двух регистров, что приводит к их неравномерному движению. Последовательность формируется путём операции XOR над выходными битами регистров.

Самая большая проблема всех методов рандомизации сообщений – это порождение действительно случайной последовательности бит. Дело в том, что генераторы случайных последовательностей, используемые для общих целей, например, в языках программирования, являются на самом деле псевдослучайными генераторами. Дело в том, что в принципе существует конечное, а не бесконечное множество состояний ЭВМ, и, как бы сложно не формировалось в алгоритме число, оно все равно имеет относительно немного бит информационной насыщенности.

Давайте рассмотрим проблему создания случайных и псевдослучайных чисел более детально. Наиболее часто в прикладных задачах результат формируют из счетчика тиков – системных часов. В этом случае данные о текущем часе несут примерно 16 бит информации, значение счетчика тиков – еще 16 бит. Это дает нам 32 бита информации – как вы помните, на сегодняшний день границей стойкой криптографии является значение в 40 бит, при реальных длинах ключей в 128 бит. Естественно, подобного метода крайне недостаточно. Идем дальше, к 32 битам можно добавить еще 16 бит из сверхбыстрого таймера, работающего на частоте 1,2 МГц в компьютерах архитектуры IBM PC AT и этого еще недостаточно. Кроме того, даже если мы сможем набрать длину ключа в 128 бит (что очень сомнительно), она будет нести псевдослучайный характер, поскольку основана на состоянии только лишь данной ЭВМ на момент начала шифрования. Источниками по-настоящему случайных величин могут быть только внешние объекты, например, человек.

Два наиболее часто применяемых метода создания случайных последовательностей с помощью человека основаны на вводе с клавиатуры. В обоих случаях пользователя просят, не задумываясь, понабирать на клавиатуре бессмысленные сочетания букв.

По первому методу над самими введенными значениями производятся действия, повышающие случайность выходного потока. Так, например, обязательно удаляются верхние 3 бита введенного ASCII символа, часто удаляются еще один верхний и еще один нижний биты. Затем, объем полученной последовательности уменьшается еще в три раза наложением первого и второго бита на третий операцией XOR. Это, в принципе, генерирует достаточно случайную последовательность бит.

По второму методу на введенные символы алгоритм не обращает никакого внимания, зато конспектирует интервалы времени, через которые произошли нажатия. Запись моментов производится по отсчетам быстрого системного таймера (частота 1,2 МГц) или внутреннему счетчику процессора, появившемуся в процессорах, начиная с Intel Pentium (частота соответствует частоте процессора). Так как верхние и младшие биты имеют определенную корреляцию между символами (первые из-за физических характеристик человека, вторые из-за особенностей операционной системы), то они отбрасываются (обычно удаляются 0-8 старших бита и 4-10 младших).

Как более редко встречающиеся варианты можно встретить 1) комбинацию обоих клавиатурных методов и 2) метод, основанный на манипуляторе «мышь» — он выделяет случайную информацию из смещений пользователем указателя мыши.

В мощных криптосистемах военного применения используются действительно случайные генераторы чисел, основанные на физических процессах. Они представляют собой платы, либо внешние устройства, подключаемые к ЭВМ через порт ввода-вывода. Два основных источника белого Гауссовского шума – высокоточное измерение тепловых флуктуаций и запись радиоэфира на частоте, свободной от радиовещания.

Криптографическая система с открытым ключом (или Асимметричное шифрование, Асимметричный шифр) — система шифрования и/или электронной цифровой подписи (ЭЦП), при которой открытый ключ передаётся по открытому (то есть незащищённому, доступному для наблюдения) каналу, и используется для проверки ЭЦП и для шифрования сообщения. Для генерации ЭЦП и для расшифрования сообщения используется секретный ключ.[1] Криптографические системы с открытым ключом в настоящее время широко применяются в различных сетевых протоколах, в частности, в протоколах TLS и его предшественнике SSL (лежащих в основе HTTPS), в SSH. Также используется в PGP, S/MIME.

Схема шифрования с открытым ключом

Пусть K — пространство ключей, а e и d — ключи шифрования и расшифрования соответственно. Ee — функция шифрования для произвольного ключа e K, такая что:

Ee(m) = c

Здесь c C, где C — пространство шифротекстов, а m M, где M — пространство сообщений.

Dd — функция расшифрования, с помощью которой можно найти исходное сообщение m, зная шифротекст c :

Dd(c) = m

{Ee: e K} — набор шифрования, а {Dd: d K} — соответствующий набор для расшифрования. Каждая пара (E,D) имеет свойство: зная Ee, невозможно решить уравнение Ee(m) = c, то есть для данного произвольного шифротекста c C, невозможно найти сообщение m M. Это значит, что по данному e невозможно определить соответствующий ключ расшифрования d. Ee является односторонней функцией, а dлазейкой.[3]

Ниже показана схема передачи информации лицом А лицу В. Они могут быть как физическими лицами, так и организациями и так далее. Но для более лёгкого восприятия принято участников передачи отождествлять с людьми, чаще всего именуемыми Алиса и Боб. Участника, который стремится перехватить и расшифровать сообщения Алисы и Боба, чаще всего называют Евой.

  1. Боб выбирает пару (e,d) и шлёт ключ шифрования e (открытый ключ) Алисе по открытому каналу, а ключ расшифрования d (закрытый ключ) защищён и секретен (он не должен передаваться по открытому каналу, либо его подлинность должна быть гарантирована некоторым сертифицирующим органом).

  2. Чтобы послать сообщение m Бобу, Алиса применяет функцию шифрования, определённую открытым ключом e: Ee(m) = c, c — полученный шифротекст.

  3. Боб расшифровывает шифротекст c, применяя обратное преобразование Dd, однозначно определённое значением d.

Основные принципы построения криптосистем с открытым ключом

  1. Начинаем с трудной задачи P. Она должна решаться сложно в смысле теории: не должно быть алгоритма, с помощью которого можно было бы перебрать все варианты решения задачи P за полиномиальное время относительно размера задачи. Более правильно сказать: не должно быть известного полиномиального алгоритма, решающего данную задачу — так как ни для одной задачи ещё пока не доказано, что для неё подходящего алгоритма нет в принципе.

  2. Можно выделить легкую подзадачу P‘ из P. Она должна решаться за полиномиальное время, лучше, если за линейное.

  3. «Перетасовываем и взбалтываем» P‘, чтобы получить задачу P», совершенно не похожую на первоначальную. Задача P», по крайней мере, должна выглядеть как оригинальная труднорешаемая задача P.

  4. P» открывается с описанием, как она может быть использована в роли ключа зашифрования. Как из P» получить P‘, держится в секрете как секретная лазейка.

  5. Криптосистема организована так, что алгоритмы расшифрования для легального пользователя и криптоаналитика существенно различны. В то время как второй решает P» задачу, первый использует секретную лазейку и решает P‘ задачу.

RSA (буквенная аббревиатура от фамилий Rivest, Shamir и Adleman) — криптографический алгоритм с открытым ключом.

RSA стал первым алгоритмом такого типа, пригодным и для шифрования, и для цифровой подписи. Алгоритм используется в большом числе криптографических приложений.

Описание алгоритма

Введение

Криптографические системы с открытым ключом используют так называемые необратимые функции, которые обладают следующим свойством:

  • Если известно , то вычислить относительно просто

  • Если известно , то для вычисления нет простого (эффективного) пути.

Под однонаправленностью понимается не теоретическая однонаправленость, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства, за обозримый интервал времени.

В основу криптографической системы с открытым ключом RSA положена задача умножения и разложения составных чисел на простые сомножители, которая является вычислительно однонаправленной задачей (см. также Тест простоты, Факторизация) .

В криптографической системе с открытым ключом каждый участник располагает как открытым ключом (англ. public key), так и секретным ключом (англ. secret key). Каждый ключ — это часть информации. В криптографической системе RSA каждый ключ состоит из пары целых чисел. Каждый участник создаёт свой открытый и секретный ключ самостоятельно. Секретный ключ каждый из них держит в секрете, а открытые ключи можно сообщать кому угодно или даже публиковать их. Открытый и секретный ключи каждого участника обмена сообщениями образуют «согласованную пару» в том смысле, что они являются взаимно обратными, т.е

 сообщения

, где

 — множество допустимых сообщений.

 открытого и секретного ключа

 и

 соответствующие функции шифрования

 и расшифрования

Алгоритм создания открытого и секретного ключей

RSA-ключи генерируются следующим образом:[4]

  1. Выбираются два случайных простых числа p и q заданного размера (например, 1024 бита каждое).

  2. Вычисляется их произведение n = pq, которое называется модулем.

  3. Вычисляется значение функции Эйлера от числа n:

  1. Выбирается целое число e ( ), взаимно простое со значением функции . Обычно в качестве e берут простые числа, содержащие небольшое количество единичных битов в двоичной записи, например, простые числа Ферма 17, 257, или 65537.

    • Число e называется открытой экспонентой (англ. public exponent)

    • Время, необходимое для шифрования с использованием быстрого возведения в степень, пропорционально числу единичных бит в e.

    • Слишком малые значения e, например 3, потенциально могут ослабить безопасность схемы RSA.[5]

  2. Вычисляется число d, мультипликативно обратное к числу e по модулю , то есть число, удовлетворяющее условию:

или: , где k — некоторое целое число.

    • Число d называется секретной экспонентой.

    • Обычно, оно вычисляется при помощи расширенного алгоритма Евклида.

  1. Пара P = (e,n) публикуется в качестве открытого ключа RSA (англ. RSA public key).

  2. Пара S = (d,n) играет роль секретного ключа RSA (англ. RSA private key) и держится в секрете.

Шифрование и расшифрование

Схема RSA

Предположим, сторона хочет послать стороне сообщение .

Сообщением являются целые числа лежащие от до , т.е .

Алгоритм:[4]

  • Взять открытый ключ стороны

  • Взять открытый текст

  • Передать шифрованное сообщение:

Алгоритм:

  • Принять зашифрованное сообщение

  • Применить свой секретный ключ для расшифровки сообщения:

Корректность схемы RSA

Уравнения и , на которых основана схема RSA, определяют взаимно обратные преобразования множества

Криптоанализ алгоритмов с открытым ключом

Казалось бы, что криптосистема с открытым ключом — идеальная система, не требующая безопасного канала для передачи ключа шифрования. Это подразумевало бы, что два легальных пользователя могли бы общаться по открытому каналу, не встречаясь, чтобы обменяться ключами. К сожалению, это не так. Рисунок иллюстрирует, как Ева, выполняющая роль активного перехватчика, может захватить систему (расшифровать сообщение, предназначенное Бобу) без взламывания системы шифрования.

В этой модели Ева перехватывает открытый ключ e, посланный Бобом Алисе. Затем создает пару ключей e’ и d’, «маскируется» под Боба, посылая Алисе открытый ключ e’, который, как думает Алиса, открытый ключ, посланный ей Бобом. Ева перехватывает зашифрованные сообщения от Алисы к Бобу, расшифровывает их с помощью секретного ключа d’, заново зашифровывает открытым ключом e Боба и отправляет сообщение Бобу. Таким образом, никто из участников не догадывается, что есть третье лицо, которое может как просто перехватить сообщение m, так и подменить его на ложное сообщение m‘. Это подчеркивает необходимость аутентификации открытых ключей. Для этого обычно используют сертификаты. Распределённое управление ключами в PGP решает возникшую проблему с помощью поручителей.[5]

Еще одна форма атаки — вычисление закрытого ключа, зная открытый (рисунок ниже). Криптоаналитик знает алгоритм шифрования Ee, анализируя его, пытается найти Dd. Этот процесс упрощается, если криптоаналитик перехватил несколько криптотекстов с, посланных лицом A лицу B.

Большинство криптосистем с открытым ключом основаны на проблеме факторизации больших чисел. К примеру, RSA использует в качестве открытого ключа n произведение двух больших чисел. Сложность взлома такого алгоритма состоит в трудности разложения числа n на множители. Но эту задачу решить реально. И с каждым годом процесс разложения становится все быстрее. Ниже приведены данные разложения на множители с помощью алгоритма «Квадратичное решето».

Год

Число десятичных разрядов в разложенном числе

Во сколько раз сложнее разложить на множители 512-битовое число

1983

71

> 20 000 000

1985

80

> 2 000 000

1988

90

250 000

1989

100

30 000

1993

120

500

1994

129

100

Также задачу разложения потенциально можно решить с помощью Алгоритма Шора при использовании достаточно мощного квантового компьютера.

Для многих методов несимметричного шифрования криптостойкость, полученная в результате криптоанализа, существенно отличается от величин, заявляемых разработчиками алгоритмов на основании теоретических оценок. Поэтому во многих странах вопрос применения алгоритмов шифрования данных находится в поле законодательного регулирования. В частности, в России к использованию в государственных и коммерческих организациях разрешены только те программные средства шифрования данных, которые прошли государственную сертификацию в административных органах, в частности, в ФСБ, ФСТЭК

Аутентифика́ция (англ. Authentication) — проверка принадлежности субъекту доступа предъявленного им идентификатора; подтверждение подлинности.

Аутентификацию не следует путать с идентификацией и авторизацией

Аутентификация на основе паролей

Почти каждая компьютерная система требует, чтобы в начале сеанса работы пользователь идентифицировал себя. Обычно пользователю предлагается ввести имя и пароль. Пароль — это секретная информация (или просто секрет), разделенная между пользователем и удаленным сервером. Пользователь помнит этот секрет, а сервер хранит либо копию секрета, либо значение, вычисленное на основе секрета. Во время аутентификации происходит сопоставление пароля, введенного пользователем, и значения, хранимого сервером. Аутентификация при помощи паролей — наиболее распространенный вид аутентификации. Если злоумышленник знает чужой пароль, то имеет возможность выдавать себя за другого субъекта, и сервер не может отличить его от настоящего пользователя. Рис. 2.1. Аутентификация при помощи пароля

На рис. 2.1 пользователь А передает по сети на сервер свое имя и пароль. Некто, наблюдающий за средой передачи, например, пользователь С, может похитить пароль пользователя А. Как только это происходит, пользователь С может выдавать себя за пользователя А до тех пор, пока пароль не будет изменен, а это может продолжаться достаточно долгое время. Поэтому для безопасности вычислительной среды требуется регулярно менять пароли.

Существует несколько способов получения секретного пароля в сети. Пользователь С может использовать программу-анализатор, или сниффер. Программы-анализаторы легко доступны в Интернете, они позволяют перехватывать сетевой трафик между компьютерами одной локальной сети. Для перехвата пароля пользователю С можно даже не находиться в одном помещении с пользователем А и не иметь доступ к его компьютеру — ему достаточно лишь сетевого подключения к той же самой локальной сети. Эти программы настолько упрощают перехват информации, что хищение пароля часто называют атакой анализатора [64]. После смены пароль остается неизвестен пользователю С только до очередного запуска программы-анализатора. Если пользователь С постоянно запускает свою программу-анализатор, то получает новый пароль пользователя А, как только он выбран.

Некоторые типы локальных сетей более уязвимы для атак анализатора. Особенно это касается тех, которые, как многоканальная сеть Ethernet, используют широковещательную среду. Сети, подобные коммутируемой сети Ethernet, не столь восприимчивы. Концентратор передает трафик только по проводам, соединяющим связывающиеся компьютеры. В этом случае, чтобы получить ту же самую информацию, пользователь С сталкивается с более трудной задачей: инсталлировать программу-анализатор на компьютер пользователя А.

Атаки анализаторов обнажают две серьезные проблемы аутентификации при помощи паролей. Во-первых, для аутентификации пользователь А должен передать свой пароль, разделенный секрет. Выполняя это, пользователь А может раскрыть его. Во-вторых, если разделенный секрет пользователя А используется долгое время, пользователю С достаточно получить пароль один раз, после чего он может выдавать себя за пользователя А, пока последний не изменит свой пароль. Эти слабые стороны делают атаки анализаторов успешными.

Аутентификация при помощи паролей неэффективна в среде со многими серверами [70]. Предположим, что пользователь А регулярно взаимодействует с шестью удаленными серверами. Он может использовать один и тот же пароль для каждой системы или разные пароли для всех систем. Если пользователь А использует один и тот же пароль, то успешная атака анализатора позволяет пользователю С получить доступ к учетным записям пользователя А сразу на всех серверах и в дальнейшем выдавать себя за него. Если пользователь А использует разные пароли для каждого сервера, то успешная атака анализатора позволяет пользователю С получить доступ только к одному серверу, но при этом пользователь А должен помнить шесть разных паролей. Скорее всего, пользователь А запишет свои пароли, в этом случае они могут быть похищены другим способом.

Взаимная аутентификация при помощи паролей возможна только если существует два разделенных между пользователем и сервером секрета, два пароля. В этом случае каждый пользователь должен помнить пароль сервера и также свой пароль. А сервер должен обменяться вторым разделенным секретом с каждым пользователем, причем этот секрет должен быть уникальным, чтобы ни один пользователь не мог маскироваться под сервер перед другим пользователем. Если взаимная аутентификация пользователей отсутствует, то пользователь С может получить пароль пользователя А, создав фальшивый сервер. Когда пользователи попытаются получить доступ к этому серверу, пользователь С сможет собрать их имена и пароли.

Эволюция механизмов аутентификации началась в ответ на атаки анализаторов. Очевидно, что должна была появиться защита от этих атак в виде шифрования. Шифрование предотвращает раскрытие пароля при передаче. Но если все пользователи используют один и тот же ключ шифрования, то любой из них может использовать анализатор, получить чужой пароль и расшифровать его тем же способом, что и сервер. Если каждый пользователь имеет свой ключ, то управление этими ключами обеспечивает более сильную аутентификацию, чем пароли. Следует отметить, что пользователь А защищен и в том случае, если его пароль используется однократно. Удачная атака анализатора позволяет пользователю С получить устаревший пароль А. Ясно, что пользователю А в этом случае необходим новый пароль для каждой попытки аутентификации.

Эти механизмы позволяют проверить подлинность личности участника взаимодействия безопасным и надежным способом.

Тип

Описание

Пароли или PIN-коды (персональные идентификационные номера)

Что-то, что знает пользователь и что также знает другой участник взаимодействия.

Обычно аутентификация производится в 2 этапа.

Может организовываться обмен паролями для взаимной аутентификации.

Одноразовый пароль

Пароль, который никогда больше не используется.

Часто используется постоянно меняющееся значение, которое базируется на постоянном пароле.

CHAP (протокол аутентификации запрос-ответ)

Одна из сторон инициирует аутентификацию с помощью посылки уникального и непредсказуемого значения «запрос» другой стороне, а другая сторона посылает вычисленный с помощью «запроса» и секрета ответ. Так как обе стороны владеют секретом, то первая сторона может проверить правильность ответа второй стороны.

Встречная проверка (Callback)

Телефонный звонок серверу и указание имени пользователя приводит к тому, что сервер затем сам звонит по номеру, который указан для этого имени пользователя в его конфигурационных данных.

Как показано на рис. 2.2, сервер генерирует случайный запрос и отправляет его пользователю А [208]. Вместо того чтобы в ответ отправить серверу пароль, пользователь А шифрует запрос при помощи ключа, известного только ему самому и серверу. Сервер выполняет такое же шифрование и сравнивает результат с шифртекстом, полученным от пользователя А. Если они совпадают, то аутентификация прошла успешно, в противном случае — неудачно.

Этот простой механизм имеет несколько преимуществ по сравнению с простой аутентификацией при помощи паролей. Поскольку запрос генерируется случайным образом, пользователь С не может повторно использовать шифртекст, сгенерированный пользователем А, чтобы выдавать себя за него. Значение, которое отправляет пользователь А, аутентифицирует его идентичность только один раз. Имя пользователя А передается открыто, и нет причин его скрывать. Перехват информации больше не является угрозой, и пользователь А может выполнять аутентификацию на удаленном сервере в открытой сети. Рис. 2.2. Аутентификация «запрос-ответ»

Механизм усложняется, если пользователю А необходимо пройти аутентификацию на многих серверах, в этом случае, как и при использовании паролей, пользователь А должен иметь для каждого сервера свой ключ шифрования запроса и защищенно хранить все эти ключи.

Чтобы этот механизм был пригоден для взаимной аутентификации, необходимы еще один запрос и ответ. Пользователь А может направить второй запрос вместе с зашифрованным первым запросом, а сервер — вернуть зашифрованный ответ вместе с уведомлением о корректной проверке запроса пользователя А. Таким образом, этот механизм может быть использован для взаимной аутентификации без второго разделяемого ключа шифрования запроса.

В некоторых случаях аутентификация типа «запрос-ответ» невозможна, потому что сервер не имеет средств формирования запроса к пользователю, это характерно для систем, первоначально спроектированных для применения простых паролей. Тогда необходим неявный запрос, который обычно базируется на значении текущего времени.

Электро́нная цифрова́я по́дпись (ЭЦП) — реквизит электронного документа, позволяющий установить отсутствие искажения информации в электронном документе с момента формирования ЭЦП и проверить принадлежность подписи владельцу сертификата ключа ЭЦП. Значение реквизита получается в результате криптографического преобразования информации с использованием закрытого ключа ЭЦП.

Электронная подпись позволяет проверять целостность данных, но не обеспечивает их конфиденциальность. Электронная подпись добавляется к сообщению и может шифроваться вместе с ним при необходимости сохранения данных в тайне. Добавление временных меток к электронной подписи позволяет обеспечить ограниченную форму контроля участников взаимодействия.

Тип

Комментарии

DSA (Digital Signature Authorization)

Алгоритм с использованием открытого ключа для создания электронной подписи, но не для шифрования.

Секретное создание хэш-значения и публичная проверка ее — только один человек может создать хэш-значение сообщения, но любой может проверить ее корректность.

Основан на вычислительной сложности взятия логарифмов в конечных полях.

RSA

Запатентованная RSA электронная подпись, которая позволяет проверить целостность сообщения и личность лица, создавшего электронную подпись.

Отправитель создает хэш-функцию сообщения, а затем шифрует ее с использованием своего секретного ключа. Получатель использует открытый ключ отправителя для расшифровки хэша, сам рассчитывает хэш для сообщения, и сравнивает эти два хэша.

MAC (код аутентификации сообщения)

Электронная подпись, использующая схемы хэширования, аналогичные MD или SHA, но хэш-значение вычисляется с использованием как данных сообщения, так и секретного ключа.

DTS (служба электронных временных меток)

Выдает пользователям временные метки, связанные с данными документа, криптографически стойким образом.

Хеширование (иногда хэширование, англ. hashing) — преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения (англ. message digest).

Хеширование применяется для сравнения данных: если у двух массивов хеш-коды разные, массивы гарантированно различаются; если одинаковые — массивы, скорее всего, одинаковы. В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов входного массива; существует множество массивов, дающих одинаковые хеш-коды — так называемые коллизии. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.

Существует множество алгоритмов хеширования с различными характеристиками (разрядность, вычислительная сложность, криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC.

Криптографической хеш-функцией называется всякая хеш-функция, являющаяся криптостойкой, то есть, удовлетворяющая ряду требований специфичных для криптографических приложений.

Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии. Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

  • Необратимость: для заданного значения хеш-функции m должно быть вычислительно неосуществимо найти блок данных X, для которого H(X) = m.

  • Стойкость к коллизиям первого рода: для заданного сообщения M должно быть вычислительно неосуществимо подобрать другое сообщение N, для которого H(N) = H(M).

  • Стойкость к коллизиям второго рода: должно быть вычислительно неосуществимо подобрать пару сообщений , имеющих одинаковый хеш.

Данные требования не являются независимыми:

  • Обратимая функция нестойка к коллизиям первого и второго рода.

  • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.

Атака «дней рождения» позволяет находить коллизии для хеш-функции с длиной значений n битов в среднем за примерно 2n / 2 вычислений хеш-функции. Поэтому n-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для неё близка к 2n / 2.

Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект). В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов хеширования, хеширующих пользовательский пароль для получения ключа.

Требования

Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

  • Необратимость или стойкость к восстановлению прообраза: для заданного значения хеш-функции m должно быть вычислительно невозможно найти блок данных X, для которого H(X) = m.

  • Стойкость к коллизиям первого рода или восстановлению вторых прообразов: для заданного сообщения M должно быть вычислительно невозможно подобрать другое сообщение N, для которого H(N) = H(M).

  • Стойкость к коллизиям второго рода: должно быть вычислительно невозможно подобрать пару сообщений , имеющих одинаковый хеш.

Данные требования не являются независимыми:

  • Обратимая функция нестойка к коллизиям первого и второго рода.

  • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.

Атака «дней рождения» позволяет находить коллизии для хеш-функции с длиной значений n битов в среднем за примерно 2n / 2 вычислений хеш-функции. Поэтому n-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для неё близка к 2n / 2.

Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект). В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов хеширования пользовательских паролей для получения ключей.

Применения

Электронная цифровая подпись

Электронная цифровая подпись(ЭЦП)- по сути шифрование сообщения алгоритмом с открытым ключом. Текст, зашифрованный секретным ключом, объединяется с исходным сообщением. Тогда проверка подписи – расшифрование открытым ключом, если получившийся текст аналогичен исходному тексту – подпись верна.

Использование хеш-функции позволяет оптимизировать данный алгоритм. Производится шифрование не самого сообщения, а значение хеш-функции взятой от сообщения. Данный метод обеспечивает следующие преимущества:

  • Понижение вычислительной сложности. Как правило, документ значительно больше его хеша.

  • Повышение криптостойкости. Криптоаналитик не может, используя открытый ключ, подобрать подпись под сообщение, а только под его хеш.

  • Обеспечение совместимости. Большинство алгоритмов оперирует со строками бит данных, но некоторые используют другие представления. Хеш-функцию можно использовать для преобразования произвольного входного текста в подходящий формат.

Проверка парольной фразы

В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.

Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP. В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Данная система подразумевает передачу сообщения по защищенному каналу, то есть каналу, из которого криптоаналитику невозможно перехватить сообщения или послать свое. Иначе он может перехватить хеш-значение парольной фразы, и использовать его для дальнейшей нелегальной аутентификации. Защищаться от подобных атак можно при помощи метода «тройного рукопожатия».

Пусть некий клиент, с именем name, производит аутентификацию по парольной фразе, pass, на некоем сервере. На сервере хранится значение хеш-функции H(pass,R2), где R2 — псевдослучайное, заранее выбранное, число. Клиент посылает запрос (name, R1), где R1 – псевдослучайное, каждый раз новое, число. В ответ сервер посылает значение R2. Клиент вычисляет значение хеш-функции H(R1,H(pass,R2)) и посылает его на сервер. Сервер также вычисляет значение H(R1,H(pass,R2)) и сверяет его с полученным. Если значения совпадают – аутентификация верна.

В такой ситуации пароль не хранится открыто на сервере и, даже перехватив все сообщения между клиентом и сервером, криптоаналитик не может восстановить пароль, а передаваемое хеш-значение каждый раз разное.

Обзор алгоритмов ЭЦП

Технология применения системы электронной цифровой подписи (ЭЦП) предполагает наличие сети абонентов, посылающих друг другу подписанные электронные документы. Для каждого абонента генерируется пара ключей: сек­ретный и открытый. Секретный ключ хранится абонентом в тайне и используется им для формирования ЭЦП. Открытый ключ известен всем другим пользователям и предназначен для проверки ЭЦП по­лучателем подписанного электронного документа. Иначе говоря, открытый ключ является необходимым инструментом, позволяю­щим проверить подлинность электронного документа и автора подписи. Открытый ключ не позволяет вычислить секретный ключ [1].

Для генерации пары ключей (секретного и открытого) в алго­ритмах ЭЦП, ис­пользуются разные математические схемы, основанные на приме­нении однонаправленных функций. Эти схемы разделяются на две группы. В основе такого разделения лежат известные сложные вы­числительные задачи:

  • задача факторизации (разложения на множители) больших целых чисел;

  • задача дискретного логарифмирования.

Первой и наиболее известной во всем мире конкретной сис­темой ЭЦП стала система RSA, математическая схема которой была разработана в 1977 г. в Массачуссетском технологическом институте США. Алгоритм получил свое название по первым буквам фамилий его авторов: Rivest, Shamir и Adleman. Надежность алгоритма основывается на трудности факторизации больших чисел.

Более надежный и удобный для реализации на персональных компьютерах ЭЦП алгоритм был разработан в 1984 г. американцем арабского происхождения Тахером Эль Гамалем и получил название El Gamal Signature Algorithm (EGSA).

Идея EGSA основана на том, что для обоснования практической невозможности фальсификации ЭЦП может быть использована более сложная вычислительная задача, чем разложение на множители большого целого числа – задача дискретного логарифмирования. Кроме того Эль Гамалю удалось избежать явной слабости алгоритма ЭЦП RSA, связанной с возможностью подделки ЭЦП под некоторыми сообщениями без определения секретного ключа.

Алгоритм цифровой подписи Digital Signature Algorithm (DSA) предложен в 1991г. в США для использования в стандарте цифровой подписи DSS (Digital Signature Standard). Алгоритм DSA является развитием алгоритма ЭЦП EGSA. По сравнению с алгоритмом ЭЦП EGSA алгоритм DSA имеет ряд преимуществ: сокращен объем памяти и время вычисления подписи. Недостатком же является необходимость при подписывании и проверке подписи выполнять сложные операции деления по модулю большого числа.

Российский стандарт цифровой подписи обозначается как ГОСТ Р 34.10-94. Алгоритм цифровой подписи, определяемый этим стандартом, концептуально близок к алгоритму DSA. Различие между этими стандартами заключается в использовании параметров ЭЦП разного порядка, что приводит к получению более безопасной подписи при использовании российского стандарта.

Алгоритмы цифровых подписей Elliptic Curve Digital Signature Algorithm (ECDSA) и ГОСТ Р 34.10-2001 являются усовершенствованием цифровых подписей DSA и ГОСТ Р 34.10-94 соответственно. Эти алгоритмы построены на базе математического аппарата эллиптических кривых над простым полем Галуа.

ГОСТ Р 34.10-94