Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kratkij konspekt lekcij.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.81 Mб
Скачать

Классификация абстрактных моделей

Иерархия моделей

Основные принципы моделирования

К классификации абстрактных моделей можно подходить с разных позиций, положив в основу классификации различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.)  и по применяемому логико-математическому аппарату (модели, основанные на использовании логик: формальной, математической, булевой, модальной, нечеткой; численно-математичесих методов: обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Далее, если поинтересоваться общими закономерностями моделирования в разных науках (безотносительно к логико-математическому аппарату) и поставить на первое место цели моделирования, то можно прийти к следующей классификации:

дескриптивные (описательные) модели;

оптимизационные модели;

многокритериальные модели;

игровые модели;

имитационные модели.

Остановимся на этой классификации подробнее и поясним ее на примерах.

Моделируя движение кометы, вторгшейся в Солнечную систему, мы описываем ситуацию (предсказываем траекторию полета кометы, расстояние, на котором она пройдет от Земли и т.д.), т.е. ставим чисто описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить в процессе моделирования.

В оптимизационных моделях мы можем воздействовать на процессы, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию. Например, меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т. е. оптимизируем процесс.

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс. В этом случае говорят о многокритериальных моделях.

Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным. Например, полководец перед сражением в условиях наличия неполной информации о противостоящей армии должен разработать план, в каком порядке вводить в бой те или иные части и т.п., учитывая возможную реакцию противника. В современной математике есть специальный раздел – теория игр,  изучающий методы принятия решений в условиях неполной информации.

Наконец, бывает, что модель в большой мере подражает реальному процессу, т.е. имитирует его. Например, моделируя динамику численности микроорганизмов в колонии, можно рассматривать совокупность отдельных объектов и следить за судьбой каждого из них, ставя определенные условия для его выживания, размножения и т.д. При этом часто явное численно-математическое описание процесса не используется, а используются некоторые логические условия, характеризующие поведение элементов моделируемой системы (например, по истечении некоторого отрезка времени микроорганизм делится на две части, а другого отрезка – погибает). Другой пример – моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, и задаются условия поведения этих шариков при столкновении друг с другом и со стенками (например, абсолютно упругий удар); при этом не нужно использовать никаких уравнений движения.

Можно сказать, что чаще всего имитационное моделирование применяется в попытке описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и логически четко сформулировано. Численно-математическое описание тогда производится на уровне статистической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента. На вопрос же «зачем это делать?» можно дать следующий ответ: имитационное моделирование позволяет выделить «в чистом виде» следствия гипотез, заложенных в наши представления о микрособытиях, очистив их от неизбежного в натурном эксперименте влияния других факторов, о которых мы можем даже не подозревать. Если же такое моделирование включает и элементы математического описания событий на микроуровне, и если исследователь при этом не ставит задачу поиска стратегии регулирования результатов (например, управления численностью колонии микроорганизмов), то отличие имитационной модели от дескриптивной достаточно условно; это, скорее, вопрос терминологии.

Еще один подход к классификации абстрактныхх моделей подразделяет их на детерминированные и стохастические (вероятностные). В детерминированных моделях входные параметры поддаются измерению однозначно и с любой степенью точности, т.е. являются детерминированными величинами. Соответственно, процесс эволюции такой системы детерминирован. В стохастических моделях значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются стохастическими; соответственно, случайным будет и процесс эволюции системы. При этом, выходные параметры стохастической модели могут быть как величинами вероятностными, так и однозначно определяемыми.

Наконец, если ограничиться непрерывными детерминистскими моделями, то их часто подразделяют на системы с сосредоточенными параметрами и системы с распределенными параметрами. Системы с сосредоточенными параметрами описываются с помощью конечного числа обыкновенных дифференциальных уравнений для зависящих от времени переменных. Пространство состояний имеет здесь конечную размерность (число степеней свободы системы конечно). В противоположность этому под системами с распределенными параметрами понимают системы, описываемые конечным числом дифференциальных уравнений в частных производных. Здесь переменные состояния в каждый момент времени есть функции одной или нескольких пространственных переменных. Пространство состояний имеет в этом случае бесконечную размерность, т.е. система обладает бесконечным числом степеней свободы.

Вербальные модели, словесные, текстовые модели - эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей являются ГОСТы, протоколы, договоры, правила дорожного движения). Отличительной особенностью таких моделей является их удобная для понимания и действия людей форма, но часто отсутствие необходимого уровня формализма для автоматизированной и автоматической обработки данных.

Математические модели, численные модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), использующих те или иные математические методы. Например, математическая модель маятника будет представлять собой систему уравнений, описывающих движение массы, происходящее в под воздействием внешней силы и механических связей, ограничивающих движение массы. Другой математической моделью являются, например, математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия. Отличительной особенностью численно-математических моделей является их способность дать точную информацию о количественных характеристиках процесса, происходящего в модели и практически полная неспособность решать качественно-логические задачи.

Информационно-коммуникационные модели - класс знаковых моделей, описывающих информационные процессы (получение, передачу, обработку, хранение и использование информации) в системах самой разнообразной природы. Примерами таких моделей могут служить OSI - семиуровневая модель взаимодействия открытых систем в компьютерных сетях, или машина Тьюринга - универсальная алгоритмическая модель.

Подчеркнем, что граница между вербальными, математическими и информационными моделями может быть проведена весьма условно. Так, информационные модели иногда считают подклассом математических моделей. Однако, в рамках информатики как самостоятельной науки, отделенной от математики, физики, лингвистики и других наук, выделение информационных моделей в отдельный класс является целесообразным.

Отметим, что существуют и иные подходы к классификации абстрактных моделей; общепринятая точка зрения здесь еще не установилась.

В прикладных науках различают следующие виды абстрактных моделей:

чисто аналитические математические модели, не использующие компьютерных средств;

информационные модели, имеющие приложения в информационных системах;

вербальные языковые модели;

компьютерные модели, которые могут использоваться для:

численного математического моделирования;

визуализации явлений и процессов (как для аналитических, так и для численных моделей);

специализированных прикладных технологий, использующих компьютер (как правило, в режиме реального времени) в сочетании с измерительной аппаратурой, датчиками и т.п.

Иерархия моделей

Модели могут быть классифицированы по иерархическому признаку моделируемых систем. По мере сложности их информационных потоков целевые системы и их модели можно разделить на следующие уровни.

Пассивные системы - это системы, которые никак не влияют на процесс моделирования и процесс моделирования никак не влияет на целевую систему. Примерами служат косные природные явления: планетная система и процесс ее моделирования, тектонические процессы и их моделирование, химические реакции и их моделирование.

Управляемые системы - системы, в которых происходят реакции на внешнее управляющее воздействие. Примерами служат: внешние устройства компьютера и его аппаратная часть, автомобили и другие транспосртные средства ручного управления, станки, стадо домашних животных, растения, колонии бактерий.

Управляющие системы - системы, которые производят управление какими-либо процессами или объектами и имеющие обратные связи. Примерами служат автоматические системы управления, роботы.

Интеллектуальные системы - распознающие системы с собственной системой принятия решений (инициативного действия), то есть такие системы, как правило, составляют "игровую систему" с другими подобными системами, самостоятельно моделируя ситуацию и отвечая на внешние воздействия соотвественно собственной модели. Примерами служат: система общественных отношений людей и животных, животные биоценозы, информационные системы, состоящие из интеллектуальных средств, таких, как антивирусные программные средства и сетевые программы преодоления комьютерной защиты (компьютерные черви и пр.), моделирование театра военных действий и политических ситуаций.

Основные принципы моделирования

Основные принципы моделирования состоят в следующем:

Принцип информационной достаточности - При полном отсутствии информации об объекте построить модель невозможно. При наличии полной информации моделирование лишено смысла. Существует уровень информационной достаточности, при достижении которого может быть построена модель системы.

Принцип осуществимости - Создаваемая модель должна обеспечивать достижение поставленной цели исследования за конечное время.

Принцип множественности моделей - Любая конкретная модель отражает лишь некоторые стороны реальной системы. Для полного исследования необходимо построить ряд моделей исследуемого процесса, причем каждая последующая модель должна уточнять предыдущую.

Принцип системности - Исследуемая система представима в виде совокупности взаимодействующих друг с другом подсистем, которые моделируются стандартными математическими методами. При этом свойства системы не являются суммой свойств ее элементов.

Принцип параметризации - Некоторые подсистемы моделируемой системы могут быть охарактеризованы единственным параметром: вектором, матрицей, графиком, формулой.

Большая часть данного курса связана с прикладными математическими моделями, в реализации которых используются компьютеры. Это вызвано тем, что внутри информатики именно компьютерное математическое и компьютерное информационное моделирование могут рассматриваться как ее составные части. Компьютерное математическое моделирование связано с информатикой технологически; использование компьютеров и соответствующих технологий обработки информации стало неотъемлемой и необходимой стороной работы физика, инженера, экономиста, эколога, проектировщика ЭВМ и т.д. Неформализованные вербальные модели не имеют столь явно выраженной привязки к информатике - ни в принципиальном, ни в технологическом аспектах.

Понятие компьютерной модели

Компьютерная модель - компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая абстрактную, то есть информационную модель некоторой системы. Компьютерные модели стали обычным инструментом численно-математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для логико-аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить так называемые "вычислительные эксперименты", которые на самом деле экспериментами не являются, так как информация берется не из физического эксперимента, физической реальности, а из модельного представления о ней, проводят в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемо опасный результат. В случае корректной логики и корректной формализации на этапе создания компьютерных моделей имеется возможность выявить основные факторы, определяющие количественные свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов — сначала создание качественно-логической, а затем и количественно-математической модели. Компьютерное же моделирование заключается в проведении серии "вычислительных экспериментов" на компьютере, целью которых является анализ на внутреннюю непротиворечивость модели и получение количественных данных о процессе функционирования модели.

Затем исследователь производит интерпретацию, то есть объяснение этих количественных результатов и их содержательное, то есть неформальное сопоставление с реальным поведением изучаемого объекта, а также частое и многократное последующее уточнение модели и т. д.

Основные определения и типы моделей

В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Модель есть материально или теоретически сконструированный объект, который заменяет (представляет) объект исследования в процессе познания, находится в отношении сходства с последним и более удобен для исследования.

Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.

Подобие между моделируемым объектом и моделью может быть физическое, структурное, функциональное, динамическое, вероятностное и геометрическое. При физическом подобии объект и модель имеют одинаковую или сходную физическую природу. Структурное подобие предполагает наличие сходства между структурой объекта и структурой модели. При выполнении объектом и моделью под определенным воздействием сходных функций наблюдается функциональное подобие. При наблюдении за последовательно изменяющимися состояниями объекта и модели отмечается динамическое подобие, вероятностное подобие  при наличии сходства между процессами вероятностного характера в объекте и модели, а геометрическое подобие  при сходстве пространственных характеристик объекта и модели.

Важнейшая особенность модели состоит в возможности неограниченного накопления специализированных знаний без потери целостного взгляда на объект исследования. Моделирование процессов в обществе, природе и технических системах - это основная компонента системного подхода к познанию этих процессов и управлению ими.

Адекватность модели объекту исследований всегда ограничена и зависит от цели моделирования. Всякая модель не учитывает некоторые свойства оригинала и поэтому является его абстракцией. Смысл абстрагирования заключается в отвлечении от некоторых несущественных в данном контексте свойств предмета и одновременном выделении существенных свойств.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы.

Словесная, или монографическая, модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы, закона или их совокупности.

Графическая модель создается в виде рисунка, географической карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат которого отложен спрос (D), а на оси абсцисс  цена (Р). Кривая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот. Конечно, данную зависимость можно выразить и словесно, но графически она намного нагляднее (рис. 1).

Рисунок 1 - Графическая модель, зависимость между спросом и ценой

Физические, или вещественные, модели создаются для конструирования пока еще несуществующих объектов. Создать модель самолета или ракеты для проверки ее аэродинамических свойств значительно проще и экономически целесообразнее, чем изучать эти свойства на реальных объектах.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей также не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По степени агрегирования объектов моделирования, масштабу различают модели:

  • микроэкономические;

  • одно-, двухсекторные (одно-, двухпродуктовые);

  • многосекторные (многопродуктовые);

  • макроэкономические;

  • глобальные.

По учету фактора времени различают модели:

  • статические;

  • динамические.

В статических моделях система описана в статике, применительно к одному определенному моменту времени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени. Динамические модели описывают систему в развитии.

По цели создания и применения различают модели:

  • балансовые;

  • эконометрические;

  • оптимизационные;

  • сетевые;

  • систем массового обслуживания;

  • имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены эконометрические модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.

Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант работы системы, производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наиболее эффективным образом для достижения поставленной цели.

Сетевые модели наиболее широко применяются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель наряду с машинными решениями содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае ЭВМ, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

По учету фактора неопределенности различают модели:

  • детерминированные (с однозначно определенными результатами);

  • стохастические (с различными вероятностными результатами).

По типу математического аппарата различают модели:

  • линейного и нелинейного программирования;

  • корреляционно-регрессионные;

  • матричные;

  • сетевые;

  • теории игр;

теории массового обслуживания и т.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]