Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Носители заряда в полупроводниках. Применение в...docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
335.63 Кб
Скачать

Будущее за графеном?

Основной претендент на смену кремнию, по мнению многих экспертов, это графен. Этот новый полупроводниковый материал, открытый в 2004 году, является особой формой углерода (C).

Сейчас разрабатывается транзистор на базе графена, который может работать в трех различных режимах. Для аналогичной задачи в кремниевом чипе, потребовалось бы три отдельных полупроводниковых транзистора. Это позволит создавать интегральные схемы из меньшего количества транзисторов, которые будут выполнять те же функции, что и их кремниевые аналоги.

Еще одним важным преимуществом графеновых транзисторов является их способность работать на высоких частотах. Как заявляют некоторые ученые специалисты, эти частоты могут достигать 500-1000 ГГц.

Однако многообещающие технологии на базе графена пока еще находятся на стадии исследований и разработок. Время покажет, сколько они еще таят в себе подводных камней. Ну, а кремний все еще остается рабочей лошадкой в современной электронике, и не спешит сдавать позиции.

Полупроводники Часть III. Типы проводимости полупроводников.

По своей способности проводить электрический ток, полупроводники занимают промежуточное место между хорошими проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. Такими факторами могут быть, например, температура или количество примесей. В данной статье мы будем рассматривать влияние примесей на проводимость кремния(Si), самого популярного полупроводника в производстве электронных компонентов.

Кристаллическая решетка кремния

В обычном состоянии, атомы кремния образуют кристаллическую решетку. На внешней электронной оболочке атома находятся четыре электрона. С их помощью, устанавливаетсяковалентная связь с четырьмя соседними атомами. Каждый электрон в такой связи принадлежит двум атомам одновременно. Таким образом, у каждого атома на внешней электронной оболочке находиться восемь электронов. В результате, поскольку последний уровень электронной оболочки оказывается завершенным, у атома очень трудно забрать его электроны и материал ведет себя как диэлектрик (не проводит электрический ток).

Легирование полупроводников

Для того чтобы повысить проводимость полупроводников, их специально загрязняют примесями – атомами химических элементов с другим значением валентности. Примеси с меньшим количеством валентных электронов, чем у полупроводника, называются акцепторами. Примеси с большей валентностью – донорами. Сам этот процесс называется легированиемполупроводников. Примерное соотношение - один атом примеси на миллион атомов полупроводника.

Типы проводимости полупроводников

1. Электронная проводимость

Добавим в полупроводник кремния пятивалентный атом мышьяка (As). Посредством четырех валентных электронов, мышьяк установит ковалентные связи c четырьмя соседними атомами кремния. Для пятого валентного электрона не останется пары, и он станет слабо связанным с атомом.

Под действием электромагнитного поля, такой электрон легко отрывается, и вовлекается в упорядоченное движение заряженных частиц (электрический ток). Атом, потерявший электрон, превращается в положительно заряженный ион с наличием свободной вакансии - дырки.

Несмотря на присутствие дырок в полупроводнике кремния с примесью мышьяка, основными носителями свободного заряда являются электроны. Такая проводимость называетсяэлектронной, а полупроводник с электронной проводимостью - полупроводником N-типа.