- •Вариант № 1
- •Вариант № 1
- •Вариант № 2
- •Вариант № 2
- •Вариант № 3
- •Вариант № 3
- •Вариант № 4
- •Вариант № 4
- •Вариант № 5
- •Вариант № 5
- •Вариант № 6
- •Вариант № 6
- •Вариант № 7
- •Вариант № 7
- •Вариант № 8
- •Вариант № 8
- •Вариант № 9
- •Вариант № 9
- •Вариант № 10
- •Вариант № 10
- •Вариант № 11
- •Вариант № 11
- •Вариант № 12
- •Вариант № 12
- •Вариант № 13
- •Вариант № 13
- •Вариант № 14
- •Вариант № 14
- •Вариант № 15
- •Вариант № 15
- •Вариант № 16
- •Вариант № 16
- •Вариант № 17
- •Вариант № 17
- •Вариант № 18
- •Вариант № 18
- •Вариант № 19
- •Вариант № 19
- •Вариант № 20
- •Вариант № 20
- •Вариант № 21
- •Вариант № 21
- •Вариант № 22
- •Вариант № 22
- •Вариант № 23
- •Вариант № 23
- •Вариант № 24
- •Вариант № 24
- •Вариант № 25
- •Вариант № 25
- •Вариант № 26
- •Вариант № 26
- •Вариант № 27
- •Вариант № 27
- •Вариант № 28
- •Вариант № 28
- •Вариант № 29
- •Вариант № 29
- •Вариант № 30
- •Вариант № 30
Вариант № 26
№ 1.
Даны векторы:
и число
.
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 2. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(0, –3, 1), A2(–4, 1, 2), A3(2, –1, 5),
A4 (3, 1, –4). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 3.
Задан вектор силы
и координаты точек: т. A
(1,
0, 3)
и т. B
(1,
–3, 8).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 4. Вычислить
проекции вектора
на оси координат, если A
(7,
2, 2),
B (0, 0, 3), C (–2, 5, 7).
ТИПОВОЙ РАСЧЁТ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ
Вариант № 26
1.
Даны вершины треугольника:
,
найти:
1) уравнение стороны АВ;
2) угол А в градусах с точностью до градуса;
3) уравнение высоты, проведенной из точки В(hB);
4) длину высоты hB;
5) уравнение медианы, проведенной из точки С(mc);
6) точку пересечения высоты hB и медианы mc;
7) найти координаты точки М, которая делит отрезок ВС в отношении ;
8) через точку С провести прямую, параллельную высоте hB.
2. Уравнение линии второго порядка привести к каноническому виду. Определить тип кривой, сделать чертеж:
9x2+2y2–72x–4y+2=0
x2+y2+2x–2y–3=0
3. Даны координаты вершин пирамиды ABCD: A( 1; 2; 0 ), B( 3; 0; -3 ), C( 5; 2; 6 ), D( -13; -8; 16 ).
Требуется найти :
1) уравнения ребра AD;
2) уравнение грани ABC;
3) проекцию вершины D на грань ABC;
4) длину высоты, опущенной из вершины D на грань ABC;
5) угол между ребром AD и гранью ABC с точностью до 1°;
6) острый угол между гранями ABC и BCD с точностью до 1°;
7) уравнения прямой, параллельной ребру DB и проходящей через вершину А;
8) уравнение плоскости, параллельной ребрам AD и AC и проходящей через вершину В;
9) уравнение плоскости, перпендикулярной ребру AD и проходящей через вершину D;
10) уравнения прямой, параллельной граням ADC и BCA, проходящей через вершину В.
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 27
№ 1.
Даны векторы:
и число
.
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 2. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 3, 0), A2(4, –1, 2), A3(3, 0, 1),
A4 (–4, 3, 5). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 3. Задан вектор силы и координаты точек: т. A (–1, –2, –1) и т. B (2, 1, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 4. Вычислить
проекции вектора
на оси координат, если A
(–2,
1, 1),
B (2, 3, –2), C (0, 0, 3).
ТИПОВОЙ РАСЧЁТ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ
Вариант № 27
1.
Даны вершины треугольника:
,
найти:
1) уравнение стороны АВ;
2) угол А в градусах с точностью до градуса;
3) уравнение высоты, проведенной из точки В(hB);
4) длину высоты hB;
5) уравнение медианы, проведенной из точки С(mc);
6) точку пересечения высоты hB и медианы mc;
7) найти координаты точки М, которая делит отрезок ВС в отношении ;
8) через точку С провести прямую, параллельную высоте hB.
2. Уравнение линии второго порядка привести к каноническому виду. Определить тип кривой, сделать чертеж:
a) 4x2–25y2–8x–50y–121=0
b) y2+x+2y+7=0
3. Даны координаты вершин пирамиды ABCD: A( 2; -1; 2 ), B( 1; 2; 1 ), C( 3; 2; 1 ), D( -5; 3; 7 ).
Требуется найти :
1) уравнения ребра AD;
2) уравнение грани ABC;
3) проекцию вершины D на грань ABC;
4) длину высоты, опущенной из вершины D на грань ABC;
5) угол между ребром AD и гранью ABC с точностью до 1°;
6) острый угол между гранями ABC и BCD с точностью до 1°;
7) уравнения прямой, параллельной ребру DB и проходящей через вершину А;
8) уравнение плоскости, параллельной ребрам AD и AC и проходящей через вершину В;
9) уравнение плоскости, перпендикулярной ребру AD и проходящей через вершину D;
10) уравнения прямой, параллельной граням ADC и BCA, проходящей через вершину В.
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
