
- •Вариант № 1
- •Вариант № 1
- •Вариант № 2
- •Вариант № 2
- •Вариант № 3
- •Вариант № 3
- •Вариант № 4
- •Вариант № 4
- •Вариант № 5
- •Вариант № 5
- •Вариант № 6
- •Вариант № 6
- •Вариант № 7
- •Вариант № 7
- •Вариант № 8
- •Вариант № 8
- •Вариант № 9
- •Вариант № 9
- •Вариант № 10
- •Вариант № 10
- •Вариант № 11
- •Вариант № 11
- •Вариант № 12
- •Вариант № 12
- •Вариант № 13
- •Вариант № 13
- •Вариант № 14
- •Вариант № 14
- •Вариант № 15
- •Вариант № 15
- •Вариант № 16
- •Вариант № 16
- •Вариант № 17
- •Вариант № 17
- •Вариант № 18
- •Вариант № 18
- •Вариант № 19
- •Вариант № 19
- •Вариант № 20
- •Вариант № 20
- •Вариант № 21
- •Вариант № 21
- •Вариант № 22
- •Вариант № 22
- •Вариант № 23
- •Вариант № 23
- •Вариант № 24
- •Вариант № 24
- •Вариант № 25
- •Вариант № 25
- •Вариант № 26
- •Вариант № 26
- •Вариант № 27
- •Вариант № 27
- •Вариант № 28
- •Вариант № 28
- •Вариант № 29
- •Вариант № 29
- •Вариант № 30
- •Вариант № 30
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 1
№ 1.
Даны векторы:
и число
.
Найти:
а)
при каких значениях
и векторы
компланарны;
б)
длину и направляющие косинусы вектора
;
в)
вектор
,
который перпендикулярен векторам
.
№ 2. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 3, 6), A2(2, 2, 1), A3(–1, 0, 1),
A4 (–4, 6, –3). Найти:
а)
;
б) площадь грани A1
A2
A3;
в)
;
г)
;
д) объём пирамиды.
№ 3.
Задан вектор силы
и координаты точек: т. A
(2,
–1, 3)
и т. B
(0,
–3, 2).
Найти:
а)
работу заданной силы
по
перемещению тела из
точки A
в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 4. Вычислить
проекции вектора
на оси координат, если A
(–3,
4, –7),
B (1, 5, –4), C (2, 7, –10).
ТИПОВОЙ РАСЧЁТ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ
Вариант № 1
1.
Даны вершины треугольника:
,
найти:
1) уравнение стороны АВ;
2) угол А в градусах с точностью до градуса;
3) уравнение высоты, проведенной из точки В(hB);
4) длину высоты hB;
5) уравнение медианы, проведенной из точки С(mc);
6) точку пересечения высоты hB и медианы mc;
7)
найти координаты точки М,
которая
делит отрезок ВС
в отношении
;
8) через точку С провести прямую, параллельную высоте hB.
2. Уравнение линии второго порядка привести к каноническому виду. Определить тип кривой, сделать чертеж:
3. Даны координаты вершин пирамиды ABCD: A( -3; 4; -7 ), B( 1; 5; -4 ), C( -5; -2; -14 ), D( -12; 7; -1 )
Требуется найти :
1) уравнения ребра AD;
2) уравнение грани ABC;
3) проекцию вершины D на грань ABC;
4) длину высоты, опущенной из вершины D на грань ABC;
5) угол между ребром AD и гранью ABC с точностью до 1;
6) острый угол между гранями ABC и BCD с точностью до 1;
7) уравнения прямой, параллельной ребру DB и проходящей через вершину А;
8) уравнение плоскости, параллельной ребрам AD и AC и проходящей через вершину В;
9) уравнение плоскости, перпендикулярной ребру AD и проходящей через вершину D;
10) уравнения прямой, параллельной граням ADC и BCA, проходящей через вершину В.
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 2
№ 1.
Даны векторы:
и число
.
Найти:
а)
при каких значениях
и векторы
компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 2. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(–4, 2, 6), A2(2, –3, 0),
A3(–10, 5, 8), A4 (–5, 2, –4). Найти:
а)
;
б) площадь грани A1
A2
A3;
в)
;
г) ; д) объём пирамиды.
№ 3.
Задан вектор силы
и координаты точек: т. A
(–1,
3, 4)
и т. B
(2,
6, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 4. Вычислить
проекции вектора
на оси координат, если A
(4,
–2, 0),
B (1, –1, –5), C (–2, 1, –3).
ТИПОВОЙ РАСЧЁТ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ
Вариант № 2
1.
Даны вершины треугольника:
,
найти:
1) уравнение стороны АВ;
2) угол А в градусах с точностью до градуса;
3) уравнение высоты, проведенной из точки В(hB);
4) длину высоты hB;
5) уравнение медианы, проведенной из точки С(mc);
6) точку пересечения высоты hB и медианы mc;
7) найти координаты точки М, которая делит отрезок ВС в отношении ;
8) через точку С провести прямую, параллельную высоте hB.
2. Уравнение линии второго порядка привести к каноническому виду. Определить тип кривой, сделать чертеж:
3. Даны координаты вершин пирамиды ABCD: A( -1; 2; -3 ), B( 4; -1; 0 ), C( 2; 1; -2 ), D( 1; -6; -5 ).
Требуется найти :
1) уравнения ребра AD;
2) уравнение грани ABC;
3) проекцию вершины D на грань ABC;
4) длину высоты, опущенной из вершины D на грань ABC;
5) угол между ребром AD и гранью ABC с точностью до 1;
6) острый угол между гранями ABC и BCD с точностью до 1;
7) уравнения прямой, параллельной ребру DB и проходящей через вершину А;
8) уравнение плоскости, параллельной ребрам AD и AC и проходящей через вершину В;
9) уравнение плоскости, перпендикулярной ребру AD и проходящей через вершину D;
10) уравнения прямой, параллельной граням ADC и BCA, проходящей через вершину В.
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ