Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lect.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
765.44 Кб
Скачать

Экспериментальные методы оптимизации

Как в аналитических, так и в поисковых методах требуется, чтобы целевая функция была вычислимой. Фактически это означает, что мы должны иметь модель оптимизируемого объекта. Во многих случаях такой модели нет. Остается использовать экспериментальные методы оптимизации, в которых вместо вычисления целевой функции ее значения определяются в эксперименте, путем измерений при заданных значениях оптимизирующих факторов.

В экспериментальных методах решение должно достигаться за возможно меньшее число определений самой функции, поскольку вычислить функцию значительно проще (и быстрее), чем поставить эксперимент и измерить значение целевой функции. При экспериментальной оптимизации используются методы, аналогичные поисковым методам оптимизационных задач. Вся разница в том, что на каждом шаге решения вместо вычисления функции потребуется задать соответствующее значение оптимизирующих факторов, провести эксперимент и определить величину целевой функции.

Аналогом координатного метода в экспериментальной оптимизации является метод Гаусса-Зайделя. Условия экспериментов в методе Гаусса-Зайделя выбираются так, что в каждом последующем опыте изменяется один оптимизирующий фактор, а все остальные имеют фиксированное значение. Траектория поиска при использовании этого метода представляет собой ломаную линию в пространстве переменных, отрезки этой линии параллельны осям координат.

Особенности градиентного метода поиска в экспериментальной оптимизации реализованы в методе Бокса-Уилсона. Основная идея метода состоит в определении направления градиента целевой функции и движении по направлению градиента в область экстремума с последующим уточнением положения экстремума. Траектория поиска в этом методе более короткая, решение достигается при меньшем числе опытов.

Симплексный метод в экспериментальной оптимизации практически воспроизводит поисковый метод и носит то же название. Отличие здесь только в том, что в поисковом методе целевая функция вычисляется, а в экспериментальном методе она определяется в опыте.

Методы линейного программирования

Задачи линейного программирования представляют частный случай задач оптимизации с целевыми функциями, зависящими от нескольких факторов. В задачах линейного программирования целевая функция зависит линейно от своих аргументов.

Известно несколько типов задач линейного программирования:

  • Шихтовая задача;

  • Задача об использовании ресурсов;

  • Транспортная задача;

  • Задача о составлении расписаний.

Транспортная задача линейного программирования.

Рассмотрим постановку задачи. Пусть имеется 4 поставщика медных концентратов (обогатительных фабрик), и существует 3 медеплавильных завода для переработки этих концентратов. Требуется организовать перевозку концентрата с обогатительных фабрик на медеплавильные заводы. Всё количество медных концентратов должно быть вывезено и переработано, все медеплавильные заводы должны быть загружены переработкой концентратов. При этом суммарная стоимость перевозки концентратов должна быть минимальной.

Обозначим обогатительные фабрики А1…А4, а медеплавильные заводы В1…В3. Пусть стоимость перевозки одной тонны концентрата от i-того поставщика к j-тому потребителю составляет Сij. Такая матрица носит название стоимости перевозок. Количество тонн концентрата, перевозимое от i-того поставщика к j-тому потребителю обозначим как хij и запишем в соответствующую матрицу, которая называется матрицей элементов решения.

В1

В2

В3

А1

А2

А3

А4

С11

С21

С31

С41

С12

С22

С32

С42

С13

С23

С33

С43

а1

а2

а3

а4

Суммарная стоимость перевозки концентрата от Аi к Вi будет:

.

Разумеется, мы желаем достичь минимальной стоимости всех перевозок. Кроме того, все элементы решения – неотрицательные числа:

.

По условию задачи все концентраты должны быть вывезены от поставщиков:

,

и доставлены потребителям:

.

В1

В2

В3

А1

А2

А3

А4

Х11

Х21

Х31

Х41

Х12

Х22

Х32

Х42

Х13

Х23

Х33

Х43

b1

b2

b3


Совокупность описанных выше условий позволяет сформулировать транспортную задачу математически: требуется отыскать такие элементы решения, которые не нарушают ограничения задачи и минимизируют целевую функцию, линейно зависящую от элементов решения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]