
- •Диагностика и оценка технического состояния технологического оборудования, применяемого на опасных производственных объектах
- •1. Система обеспечения промышленной безопасности опасных производственных объектов
- •1.1 Общие положения
- •1.3 Порядок проведения экспертизы промышленной безопасности опасных производственных объектов химической, нефтехимической, нефтегазоперерабатывающей промышленности
- •1.3.1 Экспертиза промышленной безопасности проектной документации на капитальный ремонт, консервацию и ликвидацию опасных производственных объектов
- •1.3.3 Экспертиза промышленной безопасности зданий и сооружений на опасных производственных объектах.
- •1.4 Анализ технической документации
- •1.5 Порядок оценки технического состояния оборудования. Программа обследования технического состояния
- •1.6 Установление параметров технического состояния
- •1.7 Деградационные процессы и выявление определяющих параметров технического состояния
- •1) Изменение геометрии конструкции или отдельных ее элементов
- •2) Поверхностное изнашивание или коррозийное повреждение.
- •3) Образование и развитие макродефектности.
- •4) Деградация (старение) механических свойств материалов
- •1.8 Виды предельных состояний
- •2. Свойства конструкционных материалов, дефекты конструкционных материалов
- •2.1 Основы теории механики разрушения. Основные понятия и определения
- •2.2 Виды и типы разрушений
- •Деформация и разрушение при ползучести
- •Коррозионное растрескивание
- •2.3 Основные механизмы разрушений
- •2.4 Основные понятия, определения и классификация дефектов
- •2.5 Дефекты сварных соединений
- •3. Техническое диагностирование оборудования. Неразрушающий контроль металла и сварных соединений
- •3.1 Техническая диагностика. Основные понятия и определения
- •3.2 Цели и задачи технической диагностики в системе экспертизы промышленной безопасности
- •3.3 Методы и средства технической диагностики
- •3.4 Средства технической диагностики
- •3.5 Система неразрушающего контроля на предприятиях нефтепереработки и нефтехимии
- •3.6 Выбор методов неразрушающего контроля при технической диагностике
- •4. Оценка технического состояния технологического оборудования
- •4.1 Методы оценки технического состояния сосудов и аппаратов
- •4.2 Нормы отбраковки сосудов и аппаратов, работающих под давлением
- •13) Требования к ректификационным тарелкам:
- •14) Требования к тарелкам решетчатым:
- •15) Требования к тарелкам клапанным:
- •24) Требования к тарелкам жалюзийно-клапанным:
- •25) Требования к тарелкам желобчатым:
- •4.3 Нормы отбраковки сосудов и аппаратов, работающих под давлением ниже 0,07 мПа и вакуумом
- •4.4 Методы оценки технического состояния технологических трубопроводов
- •4.5 Нормы отбраковки технологических трубопроводов
- •4.6 Оценка технического состояния вертикальных стальных цилиндрических резервуаров
- •4.7 Нормы отбраковки вертикальных стальных цилиндрических резервуаров
- •4.8 Оценка технического состояния технологических трубчатых печей.
- •4.9 Нормы отбраковки трубчатых печей.
3.2 Цели и задачи технической диагностики в системе экспертизы промышленной безопасности
Целью технической диагностики являются определение возможности и условий дальнейшей эксплуатации диагностируемого оборудования и в конечном итоге повышение промышленной и экологической безопасности. Задачами технической диагностики, которые необходимо решить для достижения поставленной цели, являются:
- обнаружение дефектов и несоответствий, установление причин их появления и на этой основе определение технического состояния оборудования;
- прогнозирование технического состояния и остаточного ресурса (определение с заданной вероятностью интервала времени, в течение которого сохранится работоспособное состояние оборудования).
Таким образом, техническая диагностика решает обширный круг задач, многие из которых являются смежными с задачами других научных дисциплин. Основной проблемой технической диагностики является распознавание состояния технической системы в условиях ограниченной информации.
Решение перечисленных задач, особенно для сложных технических систем и оборудования, позволяет получить большой экономический эффект и повысить промышленную безопасность соответствующих опасных производственных объектов. Техническая диагностика благодаря раннему обнаружению дефектов позволяет предотвратить внезапные отказы оборудования, что повышает надежность, эффективность и безопасность промышленных производств, а также дает возможность эксплуатации сложных технических систем по фактическому техническому состоянию.
3.3 Методы и средства технической диагностики
Методы диагностики технического состояния можно разделить на два принципиально отличающихся типа: разрушающие и неразрушающие. К методам разрушающего контроля обычно относят предпусковые или периодические гидравлические испытания аппаратов, а также механические испытания образцов металла, вырезанных из их элементов. При оценке технического состояния длительно проработавших аппаратов неразрушающие методы контроля обеспечивают получение наиболее существенной информации для прогнозирования ресурса их безопасной эксплуатации. Неразрушающие методы контроля предполагают применение физических методов контроля качества, не влияющих на работоспособность конструкции аппарата.
Цель неразрушающих методов контроля при изготовлении оборудования сводится к обнаружению дефектов и к постановке задачи по контролю и оценке качества материала в исходном состоянии. Неразрушающие методы контроля служат инструментом для улучшения качества конструирования и технологических процессов изготовления оборудования. При оценке ресурса безопасной эксплуатации длительно проработавшего оборудования также необходимо опираться на данные о реальной дефектности конструктивных элементов оборудования.
В настоящее время для обнаружения и идентификации дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля: электрический, магнитный, вихретоковый, радиоволновой, тепловой, визуально-измерительный, радиационный, акустический и проникающими веществам. По причинам конструктивного и эксплуатационного характера при диагностировании сварных аппаратов, трубопроводов, резервуаров используются, в основном, следующие методы НК: магнитный контроль; капиллярный контроль, акустический контроль (ультразвуковая дефектоскопия и толщинометрия, метод акустической эмиссии), радиационные методы (рентгеновский, гамма- и бета-излучением). При этом следует отметить, что радиационные методы применяются преимущественно на стадии изготовления аппаратов, а использование магнитного метода носит эпизодический характер. Руководящие документы по оценке текущего состояния нефтеперерабатывающего и нефтехимического оборудования предписывают использование в качестве основных методов ультразвуковой и капиллярной дефектоскопии, а остальные методы рассматривают как дополнительные.
Каждый из видов НК подразделяют на методы, отличающиеся следующими признаками:
- характером взаимодействия поля или вещества с объектом, определяющим соответствующие изменения поля или состояния вещества;
- параметром поля или вещества (первичным информативным параметром), измеряемым в процессе контроля;
- способом измерения параметра поля или вещества.
Ни один из методов НК не является универсальным. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов в заданных условиях. Например, многие из методов применимы для контроля некоторых типов материалов: радиоволновые — для радиопрозрачных диэлектрических материалов; электроемкостный — для неметаллических, плохо проводящих ток материалов; вихретоковый, электропотенциальный — для хороших электропроводников; магнитный — для ферромагнетиков; акустический — для материалов, обладающих небольшим затуханием звука соответствующей частоты, и т.д.
Чувствительность соответствующего метода НК оценивается наименьшими размерами выявляемых дефектов: для поверхностных — шириной раскрытия на поверхности детали, а также протяженностью и глубиной развития; для скрытых — размерами дефекта и глубиной его залегания. Сопоставление различных методов контроля можно проводить только в тех условиях, когда возможно применение нескольких методов. Перечень рекомендуемых методов НК приводится в нормативно-технических документах по технической диагностике конкретных объектов.
Для обеспечения единообразия проведения контроля в различных условиях, единства и требуемой точности получаемых результатов разработана система нормативно-технических документов. Она включает государственные стандарты, отраслевые стандарты, правила и методики контроля. В них регламентируются классификация методов НК, терминология, основные параметры средств контроля, методы и периодичность их метрологической поверки, методика проведения НК, требования к квалификации персонала и др.
Методы НК основаны на использовании физических явлений для обнаружения и определения параметров дефекта. В свою очередь неразрушающие методы контроля подразделяются на пассивные (интегральные) и активные (локальные).
К активным методам НК относятся методы, в которых измеряется изменение возбуждаемого физического поля, а к пассивным методам относятся методы, использующие свойства физического поля, возбуждаемого самым контролируемым объектом.
Локальные методы позволяют обнаружить дефект лишь на ограниченной площади, а интегральные методы способны проконтролировать весь крупногабаритный объект в целом.
Активными методами являются: визуальный и измерительный контроль, ультразвуковая дефектоскопия, магнитные, радиографические капиллярные, метод вихревых токов, электрический.
К пассивным относятся: тепловизионный, виброакустические методы и акустической эмиссии.
Рассмотрим кратко основные методы, применяемые для оценки технического состояния обоудования.
Визуальный и измерительный контроль
Визуальный контроль материала и сварных соединений выполняют с целью выявления поверхностных повреждений (трещин, коррозионных повреждений, деформированных участков, наружного износа элементов и т.д.).
Измерительный контроль материала и сварных соединений выполняют с целью определения соответствия геометрических размеров конструкций и допустимости повреждений материала и сварных соединений, выявленных при визуальном контроле, требованиям рабочих чертежей, ТУ, стандартов и паспортов.
При визуальном и измерительном контроле применяют:
- лупы, в том числе измерительные;
- линейки измерительные металлические;
- угольники поверочные лекальные;
- штангенциркули, штангенрейсмусы и штангенглубиномеры;
- щупы;
- угломеры с нониусом;
- стенкомеры и толщиномеры индикаторные;
- микрометры;
- нутромеры микрометрические и индикаторные;
- калибры;
- эндоскопы;
- шаблоны, в том числе специальные и универсальные (например, типа УШС), радиусные, резьбовые и другие;
- поверочные плиты;
- плоскопарралельные концевые меры длины с набором специальных принадлежностей;
- штриховые меры длины (стальные измерительные линейки, рулетки).
Ультразвуковая дефектоскопия
Ультразвуковой метод основан на способности ультразвуковых колебаний отражаться от внутренних неоднородностей среды.
Основаны на регистрации колебаний, возбуждающих или возникающих в контролируемом объекте. Ультразвуковые волны обладают способностью проникать вглубь материала, что используется при обнаружении весьма малых внутренних дефектов. Появление сигнала между зондирующими и донными импульсами или ослабление интенсивности прошедших через металл ультразвуковых колебаний указывает на наличие дефекта. Отраженные от границы раздела сред (дефекты типа нарушения несплошностей), имеющих различные акустические свойства, ультразвуковые волны, попадая на пьезопластину, вызывают электрические колебания, которые усиливаются и поступают на экран дефектоскопа.
Для измерения толщины применяют обычно эхо-импульсный метод. При этом толщину стенки изделия определяют по длительности прохождения ультразвукового импульса или по времени между повторно отраженными импульсами.
Основные схемы ультразвукового контроля изображены на рисунке 75.
Эхо-зеркальный метод основан на анализе акустических импульсов, зеркально отраженных от донной поверхности объекта контроля и дефекта. Он заключается в озвучивании изделия короткими импульсами ультразвука, излучаемого от генератора Ген регистрации эхо-сигналов, отраженных от дефекта к приемнику Пр (рисунок 75, а). Этот метод позволяет контролировать сварные соединения при одностороннем доступе к ним.
Теневой (или амплитудно-теневой) метод основан на регистрации уменьшения амплитуды прошедшей волны (сквозного сигнала) под влиянием дефекта. Для контроля этим методом излучающий и приемный ПЭП располагают по разные стороны от объекта контроля (рисунок 75, б).
Зеркально-теневой метод (рисунок 75, в) основан на измерении амплитуды данного сигнала. Этот метод не требует двустороннего доступа и позволяет определять дефекты в корневых швах стыковых соединений.
а) - эхо-зеркальный метод; б) - теневой; в) - зеркально-теневой
Рисунок 75 - Схемы использования основных методов УЗ-контроля сварных швов и варианты включения УЗ-преобразователей
Неразрушающий контроль сварных соединений следует проводить ультразвуковым (УЗК) методом в соответствии с действующими на данный момент нормативно-техническими документами на данные методы для выявления внутренних дефектов сварных соединений в виде трещин, непроваров, пор и неметаллических включений.
Для измерения толщины стенки пользуются ультразвуковыми толщиномерами, а для обнаружения дефектов ультразвуковыми дефектоскопами.
Капиллярный контроль
Капиллярные методы основаны на капиллярном проникновении капель индикаторных жидкостей в полости поверхностных дефектов. При контроле этими методами на очищенную поверхность наносят проникающую жидкость, которая заполняет полости поверхностных дефектов. Затем жидкость удаляют, а оставшуюся в полостях дефектов часть обнаруживают с помощью проявителя, который образует индикаторный рисунок.
Магнитные методы
Магнитные методы контроля основаны на регистрации магнитных полей рассеяния, возникающих над дефектами, или на определении магнитных свойств контролируемых изделий. Применимы только для ферромагнитных материалов.
Радиационные методы
Радиационные методы контроля основаны на регистрации и анализе проникающего ионизирующего излучения. Используется рентгеновское, гамма-излучение и т.д. Проходя через толщу изделия, проникающие излучения по-разному ослабляются в дефектном и бездефектном сечениях и несут информацию о внутреннем строении вещества и наличии дефектов внутри изделия.
Метод акустической эмиссии
Метод акустической эмиссии (АЭ) направлен на выяснение состояния объектов путем определения и анализа шумов, сопровождающих процесс образования и роста трещины в контролируемых объектах. Он базируется на регистрации акустических волн, возникающих в металле и сварных соединениях при нагружении в результате образования пластических деформаций, движения дислокаций, появления микро- и макротрещин В основу метода положено явление излучения (эмиссии) упругих волн твердым телом при локальных динамических перестройках его структуры при его деформировании и локальном разрушении (пластическая деформация, скачкообразное развитие трещин).
Тепловой метод контроля
Тепловой метод контроля основан на регистрации инфракрасного излучения, исходящего от поверхности нагретого тела. Тепловым источником нагревают контролируемый объект. В зоне несплошности отвод теплоты происходит с иной интенсивностью по сравнению с хорошо проваренным участком шва. Возникающие температурные градиенты в несколько десятков градуса предопределяют различие в тепловом инфракрасном излучении этих участков, которое регистрируется соответствующим приемником и затем преобразуется в электрические сигналы. Этот метод позволяет выявлять как поверхностные, так и внутренние дефекты в виде расслоений, пустот, раковин и других дефектов.
Вихретоковая дефектоскопия
Метод контроля вихревыми токами используют для обнаружения мельчайших дефектов на поверхности в виде непроваров, слипаний, трещин в изделиях из низколегированных сталей, алюминиевых сплавов, сплавов титана.
Вихретоковая дефектоскопия основана на анализе взаимодействия внешнего электромагнитного поля возбуждающей катушки прибора с электромагнитным полем вихревых токов объекта контроля.