- •Вимірювання неелектричних величин
- •Основні поняття та визначення
- •1.1 Реєстрація фізичних величин
- •1.1.1 Способи сприйняття відомостей про об’єкти дослідження
- •1.1.2 Способи реєстрації значень фізичних величин
- •1.1.3 Перетворення фізичних величин
- •1.2.Основні поняття вимірювань
- •1.2.1. Вимірювання і вимірювальна інформація
- •1.2.2. Вимірювальні сигнали, перетворення вимірювальних сигналів, форми вимірювальної інформації
- •1.2.3. Принцип, метод, режим, алгоритм і процес вимірювання
- •1.2.4 Методики виконання вимірювань
- •1.2.5. Лічба, контроль, розпізнавання образів, діагностика стану об'єктів і їх зв'язок з вимірюваннями
- •1.2.6. Засоби, методи і алгоритми контролю
- •1.3. Класифікація вимірювань
- •1.3.1. Види вимірювань за способом одержання вимірювальної інформації
- •1.3.2. Абсолютні і відносні, аналогові і цифрові, звичайні та статистичні вимірювання
- •1.3.3. Класифікація методів вимірювань згідно з дсту 2681-94
- •1.4. Засоби вимірювальної техніки
- •1.4.1. Класифікація засобів вимірювань
- •1.4.2. Класифікація вимірювальних приладів
- •1.4.3. Поняття еталона, зразкових і робочих засобів вимірювань
- •1.4.4 Класифікація вимірювальних перетворювачів
- •1.5. Структура засобів вимірювань
- •1.5.1. Принцип дії, вимірювальне коло і види схем засобів вимірювань
- •1.5.2. Структурні схеми і види перетворень
- •1.5.3. Узагальнена структурна схема вимірювальної інформаційної системи
- •Контрольні запитання:
- •Вимірювання геометричних розмірів
- •2.1 Вимірювання лінійних та кутових розмірів
- •2.2 Вимірювання товщини шару покриття
- •2.3 Вимірювання рівнів
- •Контрольні запитання:
- •Вимірювання механічних зусиль
- •3.1 Загальні відомості
- •3.2 Вимірювання механічних напружень
- •В цьому випадку температурна похибка також виключається, а чутливість мостового кола збільшується в двічі.
- •3.3 Вимірювання механічних сил та тиску
- •Якщо досягається рівність між крутним та компенсувальним моментами
- •3.4 Вимірювання крутних моментів
- •Вимірювання параметрів руху твердих тіл
- •4.1 Загальні відомості
- •4.2 Вимірювання параметрів лінійного руху
- •4.3 Вимірювання параметрів вібрацій
- •4.4 Вимірювання параметрів обертового руху
- •З певним наближенням можна вважати, що амплітуда вихідних імпульсів
- •Контрольні запитання:
- •Вимірювання хімічного складу та властивостей речовин
- •5.1 Загальні відомості
- •5.2 Вимірювання хімічного складу і концентрації рідини
- •5.3 Вимірювання концентрації водневих іонів, рH-метри
- •5.4 Аналіз складу газів
- •Контрольні запитання:
- •Вимірювання електричних величин
- •Вимірювання малих напруг, струмів і зарядів
- •6.1 Вимірювані величини і методи вимірювань
- •6.2 Безпосередні вимірювання малих напруг, струмів та зарядів. Гальванометри
- •6.3 Межа чутливості електромеханічних приладів
- •6.4 Вимірювання малих напруг, струмів та зарядів, що грунтуються на їх попередньому підсиленні
- •6.5 Межа чутливості електричних підсилювачів малих сигналів
- •6.6 Боротьба з завадами при вимірюванні малих сигналів
- •Контрольні запитання:
- •Лекція7 методи вимірювань високих напруг і великих струмів
- •7.1 Загальні положення, методи вимірювань
- •7.2 Вимірювання струмів і напруг методом масштабного перетворення
- •7.2.1 Вимірювання великих струмів
- •7.2.2 Метод паралельного з’єднання шунтів
- •7.2.3 Вимірювання високих постійних і змінних напруг
- •7.3 Вимірювання високих напруг електромеханічними приладами
- •7.4 Електромагнітні методи
- •7.4.1 Вимірювання струмів, що грунтуються на гальваномагнітних ефектах
- •Прилади з немагнітним інтегруючим контуром. Прилади з немагнітним інтегруючим контуром складаються з ряду пх, що оточують шину зі струмом (рис. 7.7). Для цього випадку справджується наближене рівняння
- •7.4.2 Вимірювання струмів методом ядерного магнітного резонансу (ямр)
- •7.4.3 Метод компарування
- •7.5 Електрофізичні методи вимірювань великих струмів і високих напруг
- •7.5.1 Газорозрядний метод
- •Електродами
- •7.5.2 Метод прискоення заряджених частинок
- •7.5.3 Електрооптичні методи вимірювань великих струмів і високих напруг
- •7.6 Вимірювання великих струмів, що базуються на ефекті Фарадея
- •7.7 Вимірювання високих напруг з використанням електрооптичних ефектів Керра і Поккельса
- •Контрольні запитання:
- •Методи вимірювань потужності і енергії
- •8.1 Потужність, енергія і методи їх вимірювань
- •8.2 Вимірювання енергії за допомогою електро-механічних перемножувачів
- •8.3 Вимірювання енергії однофазного змінного струму. Індукційні лічильники електроенергії
- •8.4 Вимірювання енергії за допомогою електронних перемножувачів
- •8.4.1 Модуляційний метод вимірювання потужності
- •Модуляційним методом
- •8.4.2 Вимірювання потужності методом статистичних випробувань (метод Монте-Карло)
- •8.5 Калориметричний (тепловий) метод вимірювання потужності й енергії
- •Контрольні запитання:
- •Лекція9 методи вимірювань кута фазового зсуву
- •9.1 Основні поняття та визначення
- •9.2 Вимірювання кута фазового зсуву методами прямого перетворення
- •9.2.1 Вимірювання кута фазового зсуву осцилографічними методами
- •Та синусоїдної розгорток
- •9.2.2 Вимірювання кута фазового зсуву з перетворенням його на струм чи напругу
- •9.2.3 Вимірювання кута фазового зсуву з перетворенням його на код
- •9.3 Вимірювання кута фазового зсуву методом зрівноважувального перетворення
- •9.4 Кореляційний та ортогональний методи вимірювання кута фазового зсуву
- •Кфз кореляційним методом
- •Контрольні запитання:
- •Лекція10 магнітні вимірювання
- •10.1 Основні магнітні величини та їх міри
- •10.2 Вимірювальні перетворювачі магнітних величин
- •Квантові перетворювачі базуються на використанні атомних, ядерних та електронних резонансних явищ , що виникають при збудженні атомів деяких речовин зовнішнім магнітним полем.
- •10.2.1 Індукційні та фероіндукційні перетворювачі
- •10.2.2 Гальваномагнітні перетворювачі
- •10.2.3 Квантові перетворювачі
- •10.3 Вимірювання параметрів магнітного поля. Пристрої для створення магнітного поля
- •10.3.1 Вимірювання магнітного потоку
- •10.3.2 Вимірювання індукції
- •10.3.3 Вимірювання різниці магнітних потенціалів
- •10.4 Вимірювання магнітних характеристик феромагнетиків
- •10.4.1 Намагнічуючі пристрої і досліджувані зразки
- •10.4.2 Визначення статичних характеристик
- •10.4.3 Визначення динамічних характеристик
- •Складових питомого магнітного опору феромагнетика від індукції Контрольні запитання:
- •Перелік використаних джерел
1.4.4 Класифікація вимірювальних перетворювачів
Сьогодні існує величезна кількість різноманітних за принципом дії та за призначенням вимірювальних перетворювачів (ВП) різних фізичних величин. Разом з цим з розвитком науки і техніки вони удосконалюються, створюються нові їх види. Вивчення ВП неможливе без їх систематизації та класифікації.
Залежно від природи вхідної та вихідної величин ВП поділяють на такі групи: перетворювачі електричних величин в електричні, перетворювачі неелектричних величин у неелектричні, перетворювачі електричних величин у неелектричні та перетворювачі неелектричних величин в електричні.
За виглядом функції перетворення ВП поділяють на три великі групи: масштабні, що змінюють в певну кількість разів розмір вхідної величини без зміни її фізичної природи; функціональні, що однозначно функціонально перетворюють вхідну величину зі зміною природи вхідної величини або без її зміни; операційні, які виконують над вхідною величиною математичні операції вищого порядку - диференціювання чи інтегрування за часовим параметром.
За фізичними закономірностями, покладеними в основу принципу дії, ВП можуть бути поділені на групи, що описано далі.
Механічні пружні перетворювачі. В основу принципу дії таких перетворювачів покладені залежності між вхідними механічними зусиллями і викликаними ними переміщеннями чи механічними напруженнями в матеріалі чутливого елемента, що визначаються його пружними властивостями.
Резистивні перетворювачі (механічних величин) Носієм вимірювальної інформації у резистивних перетворювачах механічних величин є електричний опір, зміна якого може бути наслідком переміщення повзунка реостата чи реохорда в реостатних та реохордних перетворювачах або ж внаслідок тензоефекту в тензорезистивних перетворювачах. Резистивні перетворювачі теплових величин (термо-резистивні перетворювачі) та резистивні перетворювачі хімічних величин (електрохімічні резистивні перетворювачі) зараховують відповідно до теплових та електрохімічних, оскільки їх принцип дії вигідно розглядати саме з погляду теплових чи електрохімічних явищ.
Ємнісні перетворювачі. В основу принципу дії ємнісних перетворювачів покладена залежність ємності конденсатора від відстані між його електродами, площі їх перекриття чи діелектричної проникності середовища між електродами, коли відстань, площа перекриття (кут оберту) чи діелектрична проникність є мірою вимірюваної величини.
П'єзоелектричні перетворювачі. До п'єзоелектричних належать перетворювачі, принцип дії яких оснований на використанні явища поляризації п'єзоелектрику як наслідку дії на нього механічних зусиль, тобто на використанні прямого та зворотного п’єзоелектричних ефектів. Сутність прямого п’єзоелектричного ефекту полягає в електричній поляризації певного класу діелектриків при механічному напруженні в їх кристалах. Зворотний п’єзоелектричний ефект характерний тим, що електрична поляризація викликає механічну напругу в кристалах або зміну їх геометричних розмірів. Різновидом п'єзоелектричних є п'єзорезонансні перетворювачі, принцип дії яких оснований на використанні залежності резонансної частоти п'єзоелемента від значення вимірюваної величини, наприклад, температури довкілля.
Індуктивні перетворювач. Це перетворювачі, в яких використовується залежність повного електричного опору намагнічувального кола від значення комплексного магнітного опору магнітного кола перетворювача, який може бути результатом зміни повітряного проміжку в магнітному колі перетворювача або результатом зміни магнітних властивостей феромагнетику внаслідок дії на нього механічних зусиль, як в індуктивних магнітопружних перетворювачах.
Взаємоіндуктивні (трансформаторні) перетворювачі. Принцип їх дії оснований на використанні залежності магнітного потоку і відповідно наведеної у вторинній обмотці ЕРС (при незмінних намагнічувальних ампервитках) від значення комплексного магнітного опору магнітопроводу, який, як і в індуктивних перетворювачах, може змінюватись зі зміною повітряного проміжку чи магнітних властивостей феромагнетику, спричинених його механічною деформацією.
Індукційні перетворювачі. Принцип дії індукційних перетворювачів оснований на використанні явища електромагнітної індукції. Вхідними (вимірюваними) величинами таких перетворювачів можуть бути швидкість зміни магнітного потоку або швидкість лінійного чи кутового переміщення вимірювальної котушки.
Гальваномагнітні перетворювачі. Принцип дії таких перетворювачів базується на використанні гальваномагнітних ефектів Гаусса або Холла. Суть ефекту Гаусса полягає в зміні електричного опору провідника чи напівпровідника при проходженні через нього електричного струму та одночасної дії на нього магнітного поля, а ефекту Холла - в появі за названих умов поперечної різниці потенціалів (ЕРС Холла). Основними різновидами гальваномагнітних перетворювачів є відповідно магніто-резистивні перетворювачі та перетворювачі Холла.
Теплові перетворювачі. Тепловими називають перетворювачі, в основу принципу роботи яких покладені фізичні ефекти, що визначаються тепловими процесами. Теплові перетворювачі - це, переважно, перетворювачі температури. Правда, непрямо вони можуть використовуватись для перетворень інших величин, що проявляються через теплові процеси, наприклад, хімічного складу, концентрацій, швидкості руху газів чи рідин тощо. Є дві основні групи теплових перетворювачів, які широко застосовуються у вимірювальній техніці. Це - термо-резистивні, що використовують залежність опору матеріалу від температури та термоелектричні, в основу принципу дії яких покладена залежність термо-ЕРС термопари від різниці температур (якщо відома температура вільних кінців термопари - від перетворюваної температури, якою є температура гарячого спаю термопари).
Електрохімічні перетворювачі. Принцип дії електрохімічних перетворювачів оснований на залежності електропровідності електролітичної комірки від складу, концентрації, температури чи інших параметрів досліджуваного розчину (електрохімічні резистивні перетворювачі); залежності електродних потенціалів від активності водневих іонів (гальванічні перетворювачі рН-метрів); а також залежності різниці електричних потенціалів на границі розділу твердої та рідкої фаз від швидкості переміщення розчину (електрокінетичні перетворювачі).
Оптичні перетворювачі. В основу принципу дії оптичних перетворювачів покладена залежність параметрів оптичного (світлового чи теплового) випромінювання від значення вимірюваної (перетворюваної) величини. Остання може діяти безпосередньо на джерело випромінювання, змінюючи інтенсивність його випромінювання, як в оптичних пірометрах, або ж на оптичний канал, впливаючи на параметри оптичного потоку, як, наприклад, у вимірювача оптичної щільності.
Перетворювачі іонізаційного випромінювання. Принцип дії таких перетворювачів оснований на перетворенні інтенсивності іонізуючого чи рентгенівського випромінювання. У перетворювачах іонізаційного випромінювання вихідна електрична величина функціонально зв'язана з інтенсивністю іонізаційного чи рентгенівського випромінювання, яка є мірою досліджуваної величини.
Вимірювання різноманітних електричних і неелектричних величин зводиться до використання електричних і неелектричних вимірювальних перетворювачів, до використання електричних засобів вимірювання в силу їх переваг у порівнянні з неелектричними. Теоретичною основою вимірювальних перетворювачів є рівняння Лагранжа, які були отримані для механічних систем і надалі знайшли застосування в немеханічних. Рівняння Лагранжа Д. Максвелл використовував для вивчення електромагнітних явищ.
Як вже неодноразово було вказано, розповсюдженими є вимірювання електричних величин, зокрема струму й напруги. Для вимірювання сили струму й напруги принципово можна використовувати будь-який фізичний прояв, наприклад, механічний, тепловий, електромагнітний. Електромагнітні прояви сили струму й наруги мають переваги. Теоретичною основою електромагнітних явищ у будь-якому середовищі є рівняння Максвелла. Фізичним змістом рівнянь Максвелла є зв'язок величин, які характеризують електромагнітне поле, з його джерелами, тобто з розподілом у просторі електричних зарядів й струмів. На цій основі створено різні вимірювальні перетворювачі струму й напруги. До них відносять подільники струму й напруги; перетворювачі, що базуються на зв’язку струму з магнітним полем, створеним цим струмом й такі, що базуються на зв’язку напруги з електричним полем, створеним цією напругою.
Вимірювальні перетворювачі струму та напруги на основі магнітного й електричного полів із струмом і напругою базуються на ефектах електромагнітної індукції (трансформаторний, електромеханічний, магнітомоду-ляційний); гальваномагнітних (ефекти Хола, Гауса); оптичних (ефекти Фарадея, Коттона-Мутона, Поккельса, Кера); явищ ядерного магнітного резонансу.
Актуальним і проблематичним питанням є вимірювання значень електрометричної ділянки діапазону сили струму, наруги. Загальний принцип вимірювання дозволяє вирішувати такі завдання, використовуючи відповідні методи, вимірювачі зокрема вимірювальні перетворювачі, що засновані на фізичних ефектах. Наприклад, для вимірювання надто малих значень струму використовують методи електроскопії.
Для вимірювань малих значень струмів використовують фотоелектричні та іонізаційні вимірювальні перетворювачі. Як фотоелектричні перетворювачі використовуються фотоелементи вакуумні й газонаповнені - з зовнішнім фотоефектом; напівпровідникові фоторезистори - з внутрішнім фотоефектом; вентильні - з вентильним фотоефектом. Фотострум вакуумних фотоелементів прямо пропорційний інтенсивності світлового потоку. Для збільшення значення фотоструму, який у фотоелементах не перевищує кілька мкА, використовують фотоелектричні помножувачі.
