Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ ПО ЛАБ РАБ МАТЕР бакалавр НД.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
5.81 Mб
Скачать

12.4. Пример выбора марки стали

Задача 1. Выбрать материал для изготовления шестерни автомобильного двигателя диаметром 40 мм с расчетным напряжением по поверхности 1300 МПа. Деталь предусмотрена для серийного производства.

Решение:

Шестерня работает в условиях динамических изгибающих нагрузок, при контактном воздействии и трении поверхностей при повороте. При анализе данных о работе подобных шестерен установлено, что шестерни разрушаются в результате усталости, деформируются при перегрузках, зубья шестерен под­вержены износу из-за трения при зацеплении.

Деформация зуба недопустима, поэтому в качестве оценочной характери­стики прочности материала примем предел текучести, т. е. способность сопро­тивляться пластической деформации ( > 580 МПа). Контактная выносливость зависит от твердости поверхности и имеет эмпирическую зависимость = 23 HRС. Зная уровень контактных напряжений (1300 МПа), находим необ­ходимую твердость поверхности зуба - > 57 HRС.

Шестерня испытывает также циклические и динамические нагрузки, по­этому материал должен обладать достаточным запасом вязкости. Из анализа работы подобных деталей следует, что ударная вязкость КСU должна быть не менее 0,5 МД/м2.

Работа в условиях трения требует достаточной твердости поверхности (ка­чественно чем выше твердость, тем лучше износостойкость поверхности). Кроме того, вероятность усталостного разрушения требует от материала достаточно высокого предела выносливости Сталь должна обладать пла­стичностью > 10%, что обеспечивает надежность работы.

Для решения задачи обеспечения высокой твердости поверхности детали в сочетании с необходимой вязкостью и прочностью ее сердцевины существует несколько видов упрочняющей обработки, основными из них являются химико-термическая обработка и поверхностная закалка ТВЧ.

Анализируя конструктивные особенности шестерни (диаметр 40 мм, т. е. шестерня с малым модулем), приходим к выводу, что применение закалки ТВЧ вряд ли целесообразно. Зуб шестерни должен иметь равномерный упрочненный поверхностный слой в пределах 0,5 - 0,8 мм, т. к. толщина зуба подобной шестерни небольшая. Такое требование накладывают на точность изготовления ин­дуктора жесткие допуски, что практически невозможно осуществить. Различная величина зазора между зубом и индуктором по поверхности зуба приведет к неравномерности глубины слоя, что недопустимо.

Таким образом, целесообразно использовать в качестве упрочняющей хи­мико-термическую обработку. Наиболее дешевой и широко используемой об­работкой является цементация или нитроцементация. Нитроцементация пред­почтительнее, поскольку она проводится при более низких температурах (820-860 °С) по сравнению с цементацией (920-950 °С), что позволяет избежать деформации после ХТО и закалки. Кроме того, длительность процесса меньше, нитроцементация интенсивнее повышает твердость поверхности и предел вы­носливости. Для этого вида ХТО применяют цементацию. Анализируя рабочие свойства цементуемых ста­лей и используя справочные данные, видим, что почти каждая из них может быть рекомендована для изготовления этих деталей ( табл.12.2).

Сопоставляя данные, приведенные в таблице 12.2, определяем, что стали двух по­следних марок можно считать наиболее пригодными для изготовления нашей шестерни, т.к. они имеют достаточный запас прочности и вязкости по сравне­нию с другими маркам. Преимущество имеет сталь 18ХГТ, которая не содержит дефицитного никеля и других дефицитных элементов.

Оценка по обрабатываемости резанием является очень важным парамет­ром. Коэффициент обрабатываемости резанием Kv определяется по отношению к обрабатываемости эталонной стали (сталь 45), скорость резания которой принята за единицу. Согласно справочным данным Kv для стали 12ХН3А - 0,43, а для стали 18ХГТ - 1,0, т. е. такой же, как эталонной стали. Та­ким образом, оптимальной маркой стали для заданной шестерни и условий ее работы будет 18ХГ

Таблица 12.2

Марка

стали

Термическая обработка

МПа

, МПа

,%

КСИ, МДж/м2

HRCповер

требуе­мые свойст­ва

ХТО, закал­ка, низкий отпуск

>580

>1300

>10

>0,5

57-60

20Х

ХТО, закал­ка, низкий отпуск

600

1380

11

0,6

55-57

15ХФ

ХТО, закал­ка, низкий отпуск

580

1300

13

0,8

56-82

20ХН

ХТО, закал­ка, низкий отпуск

600

140

14

0,8

61-63

12ХН3А

ХТО, закал­ка, низкий отпуск

850

1430

12

1,2

61-63

18ХГТ

ХТО, закал­ка, низкий отпуск

800

1450

14

0,8

61-63