- •МАтериаловедение
- •Введение
- •Изучение процесса кристаллизации
- •1.3.2. Типы кристаллических решеток
- •1.3.3. Полиморфизм металлов
- •1.3.4. Анизотропия свойств металлов
- •1.3.5. Процесс кристаллизации
- •1.3.6. Строение слитка
- •1.4. Порядок выполнения работы
- •1.5. Содержание отчета
- •1.6. Контрольные вопросы
- •1.7. Критерии оценки работы обучающихся
- •1.8. Список литературы
- •2.4. Порядок проведения работы
- •2.4.1. Подготовка к испытанию
- •2.4.2. Проведение испытаний
- •2.4.3. Определение характеристик прочности
- •Пропорциональности по диаграмме растяжения
- •2.4.4.Определение характеристик пластичности
- •Относительного сужения
- •Протокол испытаний на растяжение
- •2.5. Содержание отчета
- •2.8. Рекомендуемые материалы образцов
- •2.6. Контрольные вопросы
- •2.7. Критерии оценки работы обучающихся
- •1.9. Список литературы
- •3.1. Цель работы
- •3.2. Приборы и материалы
- •3.3. Краткие теоретические сведения
- •2 И 3 смешанный; 4 - вязкий. Б) микрофрактограммы (слева на право) вязкого (чашечный), хрупкого (ручьистый), интеркристаллитного хрупкого излома (х5000)
- •Зависимости от температуры
- •3.3.1. Определение ударной вязкости при испытаниях на ударный изгиб по гост 9454-78
- •А) образец с u-образным надрезом; б) образец с V-образным надрезом; образец с t-образным надрезом
- •Стандартные образцы на ударный изгиб по гост- 9454-78 (размеры в мм)
- •3.4. Определение порога хладоломкости
- •3.5. Фрактографические способы определения критической температуры хрупкости (ктх) стали
- •Установка
- •3.5.1.Устройство и принцип действия маятникового копра мк-30а
- •3.6. Порядок проведения работы:
- •3.6.1. Определение ударной вязкости
- •3.6.2. Определение порога хладноломкости
- •3.7. Содержание отчета
- •3.8. Контрольные вопросы
- •3.9. Критерии оценки работы обучающихся
- •3.9. Список литературы
- •4.3.1. Измерение твердости по Бринеллю
- •4.2.2. Измерение твердости по Роквеллу
- •Условия испытаний по Роквеллу
- •4.3.3. Измерение твердости по Виккерсу
- •Измерительного микроскопа: а, б, в - различные этапы измерения
- •4.3.Порядок выполнения работы
- •Значения твердости по Виккерсу hv в зависимости от диагонали
- •4.4. Методика выполнения работы
- •Характеристика используемых методов измерения твердости
- •Результаты измерения твердости
- •4.5. Содержание отчета
- •Ориентировочный перевод значений твердости, определяемой различными методами
- •4.6. Контрольные вопросы
- •4.7. Критерии оценки работы обучающихся
- •4.8. Список литературы
- •5.1. Цель работы:
- •5.2. Основные теоретические сведения
- •5.2.1. Правило фаз
- •Характеристика структурных составляющих железоуглеродистых сплавов (сталей и чугунов)
- •Фазовые превращения в точках по диаграмме железо-цементит
- •5.2.2. Построение кривой кристаллизации заданного сплава
- •5.2.3.Определение химического состав фаз и их количество в структуре сплава
- •Например:
- •Сплав содержит 0,7 % углерода
- •5.3. Методика выполнения работы
- •5.4. Содержание отчета
- •Исходные данные для анализа процесса кристаллизации железоуглеродистых сплавов в равновесных условиях
- •5.5. Контрольные вопросы
- •5.6. Критерии оценки работы обучающихся
- •5.7. Список литературы
- •Микроструктура чугуна
- •6.1. Цель работы
- •6.2. Основные теоретические представления
- •6.3. Микроструктурный анализ чугуна
- •6.3.1. Микроструктура белого чугуна
- •Ледебурит и первичный цементит, х350
- •6.3.2. Микроструктура серого чугуна
- •6.3.3. Микроструктура ковкого чугуна
- •6.3.4. Микроструктура высокопрочного чугуна
- •6.4. Методика выполнения работы
- •6.5. Содержание отчета
- •6.6. Контрольные вопросы
- •6.7.Критерии оценки работы обучающихся
- •6.8. Список литературы
- •Микроструктура углеродистой стали
- •7.1. Цель работы
- •7.2. Основные теоретические сведения
- •7.2.1. Влияние углерода и постоянных примесей на свойства сталей
- •7.2.2. Классификация сталей
- •По химическому составу:
- •По качеству:
- •По степени раскисления:
- •7.2.3. Стали углеродистые и их маркировка
- •7.2.4. Микроструктурный анализ углеродистой стали в отожженном состоянии
- •7.2.4.1. Микроструктура доэвтектоидной углеродистой стали
- •7.2.4.2. Микроструктура эвтектоидной углеродистой стали
- •7.2.4.3. Микроструктура заэвтектектоидной углеродистой стали
- •7.2.5. Микроструктура стали с зернистым перлитом
- •7.2.6. Видманштеттова структура (микроструктура) стали
- •7.4.Содержание отчета
- •7.5. Контрольные вопросы
- •7.6. Критерии оценки работы обучающихся
- •7.7. Список литературы
- •Микроструктура легированной стали
- •8.1. Цель работы
- •8.2. Основные теоретические сведения
- •8.2.1. Влияние легирующих элементов на свойства стали
- •8.2.2. Маркировка легированных сталей
- •8.2.3. Классификация легированной стали по равновесной структуре
- •8.2.4. Классификация легированной стали по структуре после охлаждения на воздухе из аустенитного состояния
- •8.2.5. Микроструктура легированных сталей в равновесном состоянии
- •Пластинчатый перлит, х 600
- •Вторичные карбиды округлой формы), х 600
- •Класса марки э42. Феррит х 600
- •8.2.6. Микроструктура легированных сталей после охлаждения на воздухе, из аустенитного состояния
- •Остаточный аустенит, х 600.
- •8.3. Методика выполнения работы
- •8.4. Содержание отчета
- •8.5. Контрольные вопросы
- •8.6. Критерии оценки работы обучающихся
- •8.7. Список литературы
- •Микроструктура цветных сплавов
- •9.1. Цель работы
- •9.2. Основные теоретические представления
- •9.2.1.Алюминевые сплавы
- •2.По способности упрочняться термической обработкой:
- •3.По свойствам:
- •Алюминий – легирующий элемент
- •9.2.1.1.Деформируемые алюминиевые сплавы
- •Сплавы, не упрочняемые термической обработкой.
- •9.2.1.2. Алюминиевые литейные сплавы
- •9.2.2.Медные сплавы
- •1. По химическому составу:
- •3. По способу упрочнения:
- •10.2.2.1.Латуни
- •9.2.2.2.Бронзы
- •9.2.3. Магниевые сплавы
- •9.2.4. Оловянистые сплавы
- •9.2.5. Микроструктурный анализ цветных сплавов
- •9.2.5.1. Микроструктура сплавов на основе алюминия
- •9.2.5.2. Микроструктура сплавов на основе меди
- •9.2.5.3. Микроструктура сплавов на основе магния
- •9.3. Методика выполнения работы
- •9.4. Содержание отчета
- •9.5. Контрольные вопросы
- •9.7. Критерии оценки работы обучающихся
- •9.8. Список литературы
- •10.2.1. Превращения при нагреве стали
- •10.2.2. Основные виды термообработки стали
- •10.2.3. Микроструктура углеродистой стали после отжига 2-го рода
- •10.3. Методика выполнения работы
- •10.4. Содержание отчета
- •10.5. Контрольные вопросы
- •10.7. Критерии оценки работы обучающихся
- •10.8. Список литературы
- •Закалка и отпуск углеродистой стали
- •11.1. Цель работы
- •11.2. Приборы и материалы
- •11.3. Основные теоретические сведения
- •11.3.1. Закалка
- •Обработки стали
- •11.3. 2. Особенности мартенситного превращения
- •Аустенита доэвтектоидной стали (при непрерывном охлаждении более строгим является использование термокинетической диаграммы)
- •11.3.3. Отпуск стали
- •11.3.4. Особенности превращений при отпуске
- •11.3.5. Микроструктура углеродистой стали после закалки и отпуска
- •Закалки и высокого отпуска. Сорбит отпуска, х500
- •11.3.6. Практические рекомендации
- •Нормы нагрева углеродистой стали при термической обработке в лабораторных электрических печах
- •11.4. Методика выполнения работы
- •Изменение твердости и структура стали в зависимости от скорости охлаждения (охлаждающей среды) и температуры отпуска
- •Отпуска (б) на твердость стали 45
- •11.5. Содержание отчета
- •11.6. Контрольные вопросы
- •11.7. Критерии оценки работы обучающихся
- •1.8. Список литературы
- •1. Назначение изделия
- •2. Условия работы изделия
- •3. Размер (сечение) изделия
- •4. Технология изготовления изделия
- •5. Экономичность
- •12.3. Задание для выполнения работы
- •Исходные данные по выбору марки легированной стали
- •12.4. Пример выбора марки стали
- •12.5. Критерии оценки работы обучающихся
- •12.6. Список литературы
- •Пластмассы
- •13.1. Цель работы
- •13.2.Краткие теоретические сведения
- •13.2.1. Состав пластмасс
- •13.2.2. Физико-механические свойства пластмасс
- •13.2.3. Классификация полимеров
- •13.2.4. Неполярные термопласты
- •13.2.5. Полярные термопластичные пластмассы
- •13.2.6. Термореактивные материалы
- •13.3. Порядок выполнения работы
- •13.4. Содержание отчета
- •13.5. Контрольные вопросы
- •13.6. Критерии оценки работы обучающихся
- •13.7. Список литературы
- •Содержание
- •625000, Г. Тюмень, ул. Володарского, 38.
- •625039, Г. Тюмень, ул. Киевская, 52.
2.По способности упрочняться термической обработкой:
не упрочняемые (Н);
упрочняемые (У).
3.По свойствам:
сплавы повышенной прочности;
жаропрочные;
коррозионностойкие .
Сплавы алюминия, обладая хорошей технологичностью, малой плотностью, высокой коррозионной стойкостью, при достаточной прочности и пластичности широко применяются в авиации, судо- и автостроении, строительстве и др. отраслях промышленности
Рис.9.1. Фрагмент диаграммы состояния системы
Алюминий – легирующий элемент
9.2.1.1.Деформируемые алюминиевые сплавы
В настоящее время принята сложная буквенная и буквенно-цифровая система маркировки алюминиевых сплавов.
Деформируемые сплавы обозначают буквами:
Д - дуралюмины, например Д1, Д16, Д19;
АД - деформируемый алюминий, например АД0, АД1, АД33;
АК - ковочные алюминиевые сплавы, например АК4-1, АК6;
АМг - сплавы алюминия с магнием, например АМг5, АМг6;
АМц - сплавы алюминия с марганцем;
АВ - авиали, например АВ;
В - высокопрочные сплавы, например В93, В95, В96;
САП - спеченный алюминиевый порошок или алюминиевая пудра.
Цифры, следующие за буквами, могут означать систему легирования (в дуралюминах, в высокопрочных сплавах, в деформируемом алюминии). В сплавах АМr3 цифры указывают на содержание магния в процентах. Дополнительная цифра в обозначениях сплавов типа АК4-1, АК6-1 и др. обозначает, что новый сплав является близкой модификацией старого АК4, АК6 и т.д.
Сплавы, не упрочняемые термической обработкой.
К этой группе относятся сплавы алюминия с марганцем (АМц) и алюминия с магнием (АМг). Они обладают высокой пластичностью, коррозионной стойкостью, свариваемостью. Упрочнить эти сплавы можно деформацией (нагартовкой - Н).
Из сплавов АМг и АМц изготавливают листы, прутки, проволоку, сварные конструкции, заклепки.
Сплавы АМц, АМг2, АМг3 применяют для изготовления бензобаков, трубопроводов, в судостроении для палубных надстроек, в строительстве. Сплавы АМг5, АМг6 применяют для средненагруженных деталей - рамы и кузова вагонов, подвесные потолки, переборки судов, лифты, корпуса и мачты судов и т.д.
Сплавы, упрочняемые термической обработкой.
Термическая обработка:
Закалка с температур 500-550°С (в зависимости от сплава), затем старение (искусственное или естественное). В процессе старения происходит распад пересыщенного твердого раствора, полученного при закалке, и выделение упрочняющих фаз.
Авиали (АВ) - АД31, АД33 - сплавы повышенной пластичности, обладают достаточной прочностью, хорошо обрабатываются резанием, обладают коррозионной стойкостью, хорошо свариваются. Сплавы применяются для деталей невысокой и средней прочности, в легкой, автомобильной промышленности для отделки кабин, салонов самолетов и вертолетов, строительстве, судостроении.
Конструкционные сплавы - дуралюмины Д1, Д16, Д18. Их маркируют буквой Д и цифрами, характеризующими порядковый номер сплава по ГОСТ 4,84-74. Их преимущества - высокая прочность при достаточной пластичности, хорошая свариваемость точечной сваркой, малая плотность, удовлетворительная обрабатываемость резанием. Недостаток - малая коррозионная стойкость. Дуралюмины обычно подвергаются закалке с температуры 500oС и естественному старению Широкое применение дуралюмины находят в авиастроении, автомобилестроении, строительстве. Например: из Д16 изготавливают обшивку для самолета.
Материал САП сваривается, подвергается обработке резанием и имеет повышенную жаропрочность - при 500°С длительная прочность за 100 ч равна 70 МПа. Плотность САП близка к плотности алюминия, он обладает высокой теплопроводностью, хорошей электропроводностью. Недостатком САП является его хрупкость и большая чувствительность к надрезу. Применение: прутки, полосы, трубы, профили, детали, работающие при температуре 500°С (лопатки компрессоров, диски и т.д.).
